Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 29, 2024

Separation of ReO4/TcO4 from simulated radioactive waste liquid by a novel series of anion exchange resins

  • Yiwei Huang , Xinlong Chen , Yinglin Shen ORCID logo EMAIL logo , Xiaomin Li , Xupeng Zhi , Peng Liu , Meiying Liu and Bin Liu EMAIL logo
From the journal Radiochimica Acta

Abstract

Selective removal of 99TcO₄ from radioactive wastewater is a challenging but significant task, which benefits spent fuel reprocessing and radioactive-waste leakage treatment. This work introduces the performance of adsorption ReO4 using a series of novel anion exchange resins, namely MAPE-1, MAPE-2, MAPE-3, and MAGD-1, impregnated with functionalized ionic liquids as active sites. They exhibit a high selectivity towards TcO₄/ReO₄, in a wide pH range of pH 5–11 for ReO₄/TcO₄ adsorption. Among these resins, MAPE-1 has the best adsorption performance for ReO4, with a maximum adsorption capacity of 202.4 mg/g and a high distribution ratio K d of 6.2 × 10⁶ mL/g at pH 7. The adsorption mechanism involves anion exchange between functionalized ionic liquids and TcO₄/ReO₄, which is supported by X-ray energy dispersive spectroscopy (EDS) and Fourier Transform Infrared spectroscopy (FT-IR) analyses. In addition, X-ray photoelectron spectroscopy (XPS) further illustrates the interaction between the resin and perrhenate.


Corresponding authors: Yinglin Shen, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China, E-mail: ; and Bin Liu, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China; and School of Stomatology, Lanzhou University, Lanzhou 730000, China, E-mail:
Dr. Yinglin Shen and Dr. Bin Liu are co-corresponding author.

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: (21976075)

  1. Research ethics: The local Institutional Review Board deemed the studyexempt from review.

  2. Author contributions: The author(s) have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The author(s) state(s) no conflict of interest.

  4. Research funding: This work was supported by the National Natural Science Foundation of China (21976075).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Icenhower, J. P., Qafoku, N. P., Zachara, J. M., Martin, W. J. The biogeochemistry of technetium: a review of the behavior of an artificial element in the natural environment. Am. J. Sci. 2010, 310, 721–752; https://doi.org/10.2475/08.2010.02.Search in Google Scholar

2. Wang, X., Chen, L., Wang, L., Fan, Q., Pan, D., Li, J., Chi, F., Xie, Y., Yu, S., Xiao, C., Luo, F., Wang, J., Wang, X., Chen, C., Wu, W., Shi, W., Wang, S., Wang, X. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem. 2019, 62, 933–967; https://doi.org/10.1007/s11426-019-9492-4.Search in Google Scholar

3. Yu, P., Wang, S., Alekseev, E. V., Depmeier, W., Hobbs, D. T., Albrecht-Schmitt, T. E., Phillips, B. L., Casey, W. H. Technetium-99 MAS NMR spectroscopy of a cationic framework material that traps TcO4− ions. Angew. Chem., Int. Ed. 2010, 49, 5975–5977; https://doi.org/10.1002/anie.201002646.Search in Google Scholar PubMed

4. Kang, K., Zhang, M., Li, L., Lei, L., Xiao, C. Selective sequestration of perrhenate by cationic polymeric networks based on elongated pyridyl ligands. Ind. Eng. Chem. Res. 2022, 61, 18870–18880; https://doi.org/10.1021/acs.iecr.2c03257.Search in Google Scholar

5. Banerjee, D., Kim, D., Schweiger, M. J., Kruger, A. A., Thallapally, P. K. Removal of TcO4− ions from solution: materials and future outlook. Chem. Soc. Rev. 2016, 45, 2724–2739; https://doi.org/10.1039/c5cs00330j.Search in Google Scholar PubMed

6. Mausolf, E., Droessler, J., Poineau, F., Hartmann, T., Czerwinski, K. R. Tetraphenylpyridinium pertechnetate: a promising salt for the immobilization of technetium. Radiochim. Acta 2012, 100, 325–328; https://doi.org/10.1524/ract.2012.1923.Search in Google Scholar

7. Fan, D., Anitori, R. P., Tebo, B. M., Tratnyek, P. G., Pacheco, J. S. L., Kukkadapu, R. K., Engelhard, M. H., Bowden, M. E., Kovarik, L., Arey, B. W. Reductive sequestration of pertechnetate (TcO) by nano zerovalent iron (nZVI) transformed by abiotic sulfide. Environ. Sci. Technol. 2013, 47, 5302; https://doi.org/10.1021/es304829z.Search in Google Scholar PubMed

8. DiBlasi, N. A., Dardenne, K., Prüssmann, T., Duckworth, S., Altmaier, M., Gaona, X. Technetium complexation with multidentate carboxylate-containing ligands: trends in redox and solubility phenomena. Environ. Sci. Technol. 2023, 57, 3661–3670; https://doi.org/10.1021/acs.est.2c09360.Search in Google Scholar PubMed

9. Buzetzky, D., Kovács, E. M., Nagy, M. N., Kónya, J. Sorption of pertechnetate anion by cation modified bentonites. J. Radioanal. Nucl. Chem. 2019, 322, 1771–1776; https://doi.org/10.1007/s10967-019-06852-8.Search in Google Scholar

10. Maulden, E., Gager, E., Nino, J. C., Pearce, C. I., Szecsody, J. E., Mackey, N. M., Le, T., Johnson, M., Caracuel, N., Wall, N. A. Properties of iron-functionalized organoclays. Consequences for pertechnetate sequestration. Appl. Clay Sci. 2023, 233, 106828; https://doi.org/10.1016/j.clay.2023.106828.Search in Google Scholar

11. Zhang, P., Chen, Y.-Z., Weng, H.-Q., Guo, Z.-F., Chen, J.-L., Zhao, X., Ye, G.-A., Lin, M.-Z. Dication-accelerated anion transport inside micropores for the rapid decontamination of pertechnetate. Nucl. Sci. Tech. 2022, 33, 42; https://doi.org/10.1007/s41365-022-01026-w.Search in Google Scholar

12. Ming, M., Zhou, H., Mao, Y.-N., Li, H.-R., Chen, J. Selective perrhenate/pertechnetate removal by a MOF-based molecular trap. Dalton Trans. 2022, 51, 4458–4465; https://doi.org/10.1039/d1dt04175d.Search in Google Scholar PubMed

13. Kang, K., Li, L., Zhang, M., Zhang, X., Lei, L., Xiao, C. Constructing cationic metal–organic framework materials based on pyrimidyl as a functional group for perrhenate/pertechnetate sorption. Inorg. Chem. 2021, 60, 16420–16428; https://doi.org/10.1021/acs.inorgchem.1c02257.Search in Google Scholar PubMed

14. Leksina, U. M., Shishov, A. Y., Mulloyarova, V. V., Puzyk, A. M., Tolstoy, P. M., Vokuev, M. F., Glushkov, E. D., Petrov, V. G., Matveev, P. I. A new deep eutectic solvent based on diphenylguanidine for the effective extraction of pertechnetate anion. Sep. Purif. Technol. 2023, 316, 123824; https://doi.org/10.1016/j.seppur.2023.123824.Search in Google Scholar

15. Masud, R. S., Wu, Y., Mimura, H., Niibori, Y., Onishi, T., Koyama, S.-i. Selective separation of Re (VII) and Tc (VII) by xerogel microcapsules enclosing TOA extractant. Procedia Chem.2012, 7, 258–267; https://doi.org/10.1016/j.proche.2012.10.042.Search in Google Scholar

16. Levitskaia, T. G., Campbell, E. L., Hall, G. B., Chatterjee, S., Boglaienko, D., Reilly, D. D., Carlson, M. A. Characterization of spent Purolite A530E resin with implications for long-term radioactive contaminant removal. J. Environ. Chem. Eng. 2020, 8, 104155; https://doi.org/10.1016/j.jece.2020.104155.Search in Google Scholar

17. Li, J., Zhu, L., Xiao, C., Chen, L., Chai, Z., Wang, S. Efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin. Radiochim. Acta 2018, 106, 581–591; https://doi.org/10.1515/ract-2017-2829.Search in Google Scholar

18. Gu, B., Brown, G. M., Bonnesen, P. V., Liang, L., Moyer, B. A., Ober, R., Alexandratos, S. D. Development of novel bifunctional anion-exchange resins with improved selectivity for pertechnetate sorption from contaminated groundwater. Environ. Sci. Technol. 2000, 34, 1075–1080; https://doi.org/10.1021/es990951g.Search in Google Scholar

19. Korkisch, J., Worsfold, P. J. Handbook of ion exchange resins: their application to inorganic analytical chemistry: Volume 1, CRC Press, Boca Raton, FL, 1989 (ISBN 0-8493-3191-9). 301 pp. Price £ 100.50. Anal. Chim. Acta 1990, 236, 511; https://doi.org/10.1016/s0003-2670(00)83364-4.Search in Google Scholar

20. Bao, S., Tang, Y., Zhang, Y., Liang, L. Recovery and separation of metal ions from aqueous solutions by solvent-impregnated resins. Chem. Eng. Technol. 2016, 39, 1377–1392; https://doi.org/10.1002/ceat.201500324.Search in Google Scholar

21. Alam, M. F., Begum, Z. A., Furusho, Y., Takata, H., Rahman, I. M. Study on separation of rhenium, a surrogate element of fissiogenic technetium, from aqueous matrices using ion-selective extraction chromatographic resins. Separations 2023, 10, 216; https://doi.org/10.3390/separations10030216.Search in Google Scholar

22. Cocalia, V. A., Rogers, R. D. Ionic liquid impregnated resins in solid-liquid separations. ECS Trans. 2007, 3, 123; https://doi.org/10.1149/1.2798654.Search in Google Scholar

23. Fu, L., Pan, X., Zu, J., He, L. Synthesis of diamide-based resin for selective separation of 99Tc. J. Radioanal. Nucl. Chem. 2021, 328, 481–490; https://doi.org/10.1007/s10967-021-07601-6.Search in Google Scholar

24. Barrera, J., Tarancón, A., Bagán, H., García, J. F. A new plastic scintillation resin for single-step separation, concentration and measurement of technetium-99. Anal. Chim. Acta 2016, 936, 259–266; https://doi.org/10.1016/j.aca.2016.07.008.Search in Google Scholar PubMed

25. Han, D., Li, X., Cui, Y., Yang, X., Chen, X., Xu, L., Peng, J., Li, J., Zhai, M. Polymeric ionic liquid gels composed of hydrophilic and hydrophobic units for high adsorption selectivity of perrhenate. RSC Adv. 2018, 8, 9311–9319; https://doi.org/10.1039/c8ra00838h.Search in Google Scholar PubMed PubMed Central

26. Dong, F., Li, X., Huang, Y., Zhi, X., Yang, S., Shen, Y. Highly efficient uptake of TcO4– by imidazolium-functionalized wood sawdust. ACS omega 2021, 6, 25672–25679; https://doi.org/10.1021/acsomega.1c03784.Search in Google Scholar PubMed PubMed Central

27. Shimojo, K., Suzuki, H., Yokoyama, K., Yaita, T., Ikeda-Ohno, A. Solvent extraction of technetium (VII) and rhenium (VII) using a hexaoctylnitrilotriacetamide extractant. Anal. Sci. 2020, 36, 1435–1437; https://doi.org/10.2116/analsci.20C014.Search in Google Scholar PubMed

28. Huang, Y., Li, X., Wu, F., Yang, S., Dong, F., Zhi, X., Chen, X., Tian, G., Shen, Y. A novel functionalized ionic liquid for highly selective extraction of TcO4. Inorg. Chem. 2022, 61, 10609–10617; https://doi.org/10.1021/acs.inorgchem.2c01775.Search in Google Scholar PubMed

29. Ristić, M., Musić, S., Marciuš, M., Krehula, S., Kuzmann, E., Homonnay, Z. Denitration of simulated radioactive liquid waste. J. Radioanal. Nucl. Chem. 2019, 322, 1477–1485; https://doi.org/10.1007/s10967-019-06736-x.Search in Google Scholar

30. Li, J., Dai, X., Zhu, L., Xu, C., Zhang, D., Silver, M. A., Li, P., Chen, L., Li, Y., Zuo, D., Zhang, H., Xiao, C., Chen, J., Diwu, J., Farha, O. K., Albrecht-Schmitt, T. E., Chai, Z., Wang, S. 99TcO4− remediation by a cationic polymeric network. Nat. Commun. 2018, 9, 1–11; https://doi.org/10.1038/s41467-018-05380-5.Search in Google Scholar PubMed PubMed Central

31. Zhi, X., Li, X., Dong, F., Huang, Y., Yang, S., Yan, T., Shen, Y. A hydrophobic imidazolium cationic framework for selective adsorption of TcO4−/ReO4− from aqueous solutions. Mater. Adv. 2022, 3, 4870–4877; https://doi.org/10.1039/d2ma00220e.Search in Google Scholar

32. Li, X., Han, D., Guo, T., Peng, J., Xu, L., Zhai, M. Quaternary phosphonium modified hierarchically macro/mesoporous silica for fast removal of perrhenate. Ind. Eng. Chem. Res. 2018, 57, 13511–13518; https://doi.org/10.1021/acs.iecr.8b03306.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2023-0261).


Received: 2023-11-27
Accepted: 2024-03-02
Published Online: 2024-03-29
Published in Print: 2024-05-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2023-0261/html
Scroll to top button