Skip to main content
Log in

Isolation and Characterization of Staphylococcus aureus in Bovine Milk from Rewa, India

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Mastitis in dairy animals affect milk quality and quantity, animal health and welfare, antimicrobial use and economics of dairy farm, and antimicrobial residues in milk. Staphylococcus aureus is most common mastitis pathogen with ability to cause infections which are difficult to treat. The present study aimed to characterize the S. aureus strains associated with dairy animal with reference to its virulence, biofilm formation, antimicrobial resistance including methicillin and penicillin G resistance. A total of 100 bovine milk samples were screened by bacterial culture method, out of which 18 S. aureus and 6 methicillin-resistant S. aureus (MRSA) isolates were identified and characterized for virulence determinants. The strains were uniformly positive for the virulence determinants. However, the hemolysis in blood agar was found to be specific but not a sensitive criterion for virulence. The biofilm formation ability of the isolates showed 61.66% of S. aureus and 83.33% of MRSA strains were positive by Microtiter plate method. The biofilm formation genes (icaA and icaD) were detected in all the strains. The multi-drug resistance profile of the strains was studied by disk diffusion assay where over 70% of S. aureus strains were sensitive to all the anti-microbial agents (except penicillin) and only 33.33% of the strains had the MAR index above 0.2. All the MRSA strains (100%) had a MAR index of ≥ 0.2. All the strains showed resistance to penicillin which is considered as a prognostic marker for mastitis. The presence of penicillin and/or methicillin resistant, biofilm forming S. aureus mastitis strains can severely affect the treatment outcomes and economics of small dairy farmers of the region. Further studies to understand the population structure of the strains, by whole genome or traditional sequence-based methods and MIC values of antibiotics are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All datasets are presented in the main manuscript.

References

  1. Rainard P, Foucras G, Fitzgerald JR, Watts JL, Koop G, Middleton JR (2018) Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis 65:149–165. https://doi.org/10.1111/tbed.12698

    Article  PubMed  Google Scholar 

  2. Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:1–9. https://doi.org/10.3389/fcimb.2014.00178

    Article  Google Scholar 

  3. Szweda P, Schielmann M, Milewski S, Frankowska A, Jakubczak A (2012) Biofilm production and presence of ica and bap genes in Staphylococcus aureus strains isolated from cows with mastitis in the eastern poland. Polish J Microbiol 61:65–69. https://doi.org/10.33073/pjm-2012-009

    Article  CAS  Google Scholar 

  4. Melchior MB, van Osch MHJ, Lam TJGM, Vernooij JCM, Gaastra W, Fink-Gremmels J (2011) Extended biofilm susceptibility assay for Staphylococcus aureus bovine mastitis isolates: evidence for association between genetic makeup and biofilm susceptibility. J Dairy Sci 94:5926–5937. https://doi.org/10.3168/jds.2011-4243

    Article  CAS  PubMed  Google Scholar 

  5. Barkema HW, Schukken YH, Zadoks RN (2006) Invited review: the role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J Dairy Sci 89:1877–1895. https://doi.org/10.3168/jds.S0022-0302(06)72256-1

    Article  CAS  PubMed  Google Scholar 

  6. Haveri M, Hovinen M, Roslöf A, Pyörälä S (2008) Molecular types and genetic profiles of Staphylococcus aureus strains isolated from bovine intramammary infections and extramammary sites. J Clin Microbiol 46:3728–3735. https://doi.org/10.1128/JCM.00769-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Constable PD, Hinchcliff KW, Done SH, Grünberg WBT-VM (2017) Diseases of the Mammary Gland. In: Saunders WB (ed) Veterinary Medicine, Eleventh Edition, pp 1904–2001 https://doi.org/10.1016/B978-0-7020-5246-0.00020-6

  8. EFSA (2012) Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in Salmonella Campylobacter and indicator Escherichia coli and Enterococcus spp. bacteria transmitted through food. EFSA J. https://doi.org/10.2903/j.efsa.2012.2742

    Article  Google Scholar 

  9. Barritt M (1936) The intensification of voges proskauer reaction by the addition of alpha-naphthol. J Pathol Bacteriol 42:441–454

    Article  CAS  Google Scholar 

  10. Hebert GA, Crowder CG, Hancock GA, Jarvis WR, Thornsberry C (1988) Characteristics of coagulase-negative staphylococci that help differentiate these species and other members of the family Micrococcaceae. J Clin Microbiol 26:1939–1949. https://doi.org/10.1128/jcm.26.10.1939-1949.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bio-Rad (2018) InstaGeneTM Matrix. https://www.bio-rad.com/sites/default/files/webroot/web/pdf/lsr/literature/LIT544.pdf. Accessed 22 Jan 2024.

  12. Stegger M, Andersen PS, Kearns A, Pichon B, Holmes MA, Edwards G et al (2012) Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecALGA251. Clin Microbiol Infect 18:395–400. https://doi.org/10.1111/j.1469-0691.2011.03715.x

    Article  CAS  PubMed  Google Scholar 

  13. Brakstad OG, Aasbakk K, Maeland JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30:1654–1660. https://doi.org/10.1128/jcm.30.7.1654-1660.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haveri M, Suominen S, Rantala L, Honkanen-Buzalski T, Pyörälä S (2005) Comparison of phenotypic and genotypic detection of penicillin G resistance of Staphylococcus aureus isolated from bovine intramammary infection. Vet Microbiol 106:97–102. https://doi.org/10.1016/j.vetmic.2004.12.015

    Article  CAS  PubMed  Google Scholar 

  15. Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS (2003) Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol 92:179–185. https://doi.org/10.1016/S0378-1135(02)00360-7

    Article  CAS  PubMed  Google Scholar 

  16. Kaiser TDL, Pereira EM, dos Santos KRN, Maciel ELN, Schuenck RP, Nunes APF (2013) Modification of the congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis 75:235–239. https://doi.org/10.1016/j.diagmicrobio.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  17. Cucarella C, Tormo MÁ, Úbeda C, Trotonda MP, Monzón M, Peris C et al (2004) Role of biofilm-associated protein Bap in the pathogenesis of bovine Staphylococcus aureus. Infect Immun 72:2177–2185. https://doi.org/10.1128/IAI.72.4.2177-2185.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tremblay YDN, Lamarche D, Chever P, Haine D, Messier S, Jacques M (2013) Characterization of the ability of coagulase-negative staphylococci isolated from the milk of Canadian farms to form biofilms. J Dairy Sci 96:234–246. https://doi.org/10.3168/jds.2012-5795

    Article  CAS  PubMed  Google Scholar 

  19. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  CAS  PubMed  Google Scholar 

  20. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  21. Watts JL (2019) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 4th edn. Clinical and Laboratory Standards Institute, Pennsylvania, pp 1–200

    Google Scholar 

  22. Singh M, Sharma A, Singh A (2013) Isolation and antibiogram of beta-hemolytic Staphylococcus aureus associated with bovine clinical mastitis. Haryana Vet 52:54–56

    Google Scholar 

  23. Acharya KR, Brankston G, Slavic D, Greer AL (2021) Spatio-temporal variation in the prevalence of major mastitis pathogens isolated from bovine milk samples between 2008 and 2017 in Ontario Canada. Front Vet Sci 8:1–12. https://doi.org/10.3389/fvets.2021.742696

    Article  Google Scholar 

  24. Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH (2011) Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia 16:357–372. https://doi.org/10.1007/s10911-011-9236-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Markey B, Leonard F, Archambault M, Cullinane A, Maguire D (2013) Clinical veterinary microbiology, 2nd edn. Mosby Elsevier, London, pp 105–119

    Google Scholar 

  26. Boerlin P, Kuhnert P, Hüssy D, Schaellibaum M (2003) Methods for identification of Staphylococcus aureus isolates in cases of bovine mastitis. J Clin Microbiol 41:767–771. https://doi.org/10.1128/JCM.41.2.767-771.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lam TJG (2008) Mastitis control FROM SCIENCE Mastitis control. In: Proceedings of international conference, The Hague, the Netherlands.

  28. Monecke S, Kuhnert P, Hotzel H, Slickers P, Ehricht R (2007) Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle. Vet Microbiol 125:128–140. https://doi.org/10.1016/j.vetmic.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  29. Younis A, Leitner G, Heller DE, Samra Z, Gadba R, Lubashevsky G et al (2000) Phenotypic characteristics of Staphylococcus aureus isolated from bovine mastitis in Israeli dairy herds. J Vet Med Ser B 47:591–597. https://doi.org/10.1046/j.1439-0450.2000.00389.x

    Article  CAS  Google Scholar 

  30. Ryman VE, Kautz FM, Nickerson SC (2021) Case study: misdiagnosis of nonhemolytic Staphylococcus aureus isolates from cases of bovine mastitis as coagulase-negative staphylococci. Animals 11:1–8. https://doi.org/10.3390/ani11020252

    Article  Google Scholar 

  31. Kiedrowski MR, Horswill AR (2011) New approaches for treating staphylococcal biofilm infections. Ann N Y Acad Sci 1241:104–121. https://doi.org/10.1111/j.1749-6632.2011.06281.x

    Article  CAS  PubMed  Google Scholar 

  32. Thammavongsa V, Missiakas DM, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342:863–866. https://doi.org/10.1126/science.1242255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Haran KP, Godden SM, Boxrud D, Jawahir S, Bender JB, Sreevatsan S (2012) Prevalence and characterization of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus, isolated from bulk tank milk from minnesota dairy farms. J Clin Microbiol 50:688–695. https://doi.org/10.1128/JCM.05214-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ikawaty R, Brouwer EC, Jansen MD, van Duijkeren E, Mevius D, Verhoef J et al (2009) Characterization of dutch Staphylococcus aureus from bovine mastitis using a multiple locus variable number tandem repeat analysis. Vet Microbiol 136:277–284. https://doi.org/10.1016/j.vetmic.2008.10.034

    Article  CAS  PubMed  Google Scholar 

  35. Prashanth K, Rao KR, Reddy VP, Saranathan R, Makki AR (2011) Genotypic characterization of staphylococcus aureus obtained from humans and bovine mastitis samples in India. J Glob Infect Dis 3:115–122. https://doi.org/10.4103/0974-777X.81686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zecconi A (2010) Staphylococcus aureus mastitis: what we need to know to control them. Isr J Vet Med 65:93–99

    Google Scholar 

  37. Wang D, Wang Z, Yan Z, Wu J, Ali T, Li J et al (2016) Bovine mastitis Staphylococcus aureus: antibiotic susceptibility profile, resistance genes and molecular typing of methicillin-resistant and methicillin-sensitive strains in china. Infect Genet Evol 31:9–16. https://doi.org/10.1016/j.meegid.2014.12.039

    Article  CAS  Google Scholar 

  38. Shrivastava N, Sharma V, Shrivastav A, Nayak A, Rai AK (2018) prevalence and characterization of panton–valentine leukocidin-positive Staphylococcus aureus in bovine milk in Jabalpur district of Madhya Pradesh India. Vet World 11:316–320. https://doi.org/10.14202/vetworld.2018.316-320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mistry H, Sharma P, Mahato S, Saravanan R, Kumar PA, Bhandari V (2016) Prevalence and characterization of oxacillin susceptible meca-positive clinical isolates of Staphylococcus aureus causing bovine mastitis in India. PLoS One 11:1–7. https://doi.org/10.1371/journal.pone.0162256

    Article  CAS  Google Scholar 

  40. Panahi M, Saei HD (2019) Genetic diversity and methicillin resistance of Staphylococcus aureus originating from buffaloes with mastitis in Iran. Comp Immunol Microbiol Infect Dis 62:19–24

    Article  PubMed  Google Scholar 

  41. Aires-de-Sousa M (2017) Methicillin-resistant Staphylococcus aureus among animals: current overview. Clin Microbiol Infect 23:373–380. https://doi.org/10.1016/j.cmi.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  42. Sakwinska O, Giddey M, Moreillon M, Morisset D, Waldvogel A, Moreillon P (2011) Staphylococcus aureus host range and human-bovine host shift. Appl Environ Microbiol 77:5908–5915. https://doi.org/10.1128/AEM.00238-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Annamanedi M, Sheela P, Sundareshan S, Isloor S, Gupta P, Jasmeen P et al (2021) Molecular fingerprinting of bovine mastitis-associated Staphylococcus aureus isolates from India. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-021-94760-x

    Article  CAS  Google Scholar 

  44. Shrivastava N, Sharma V, Nayak A, Shrivastava AB, Sarkhel BC, Shukla PC et al (2017) prevalence and characterization of methicillin-resistant Staphylococcus aureus (MRSA) mastitis in dairy cattle in Jabalpur Madhya Pradesh. J Anim Res 7:77. https://doi.org/10.5958/2277-940x.2017.00011.0

    Article  Google Scholar 

  45. Bissong MEA, Ateba CN (2020) Genotypic and phenotypic evaluation of biofilm production and antimicrobial resistance in Staphylococcus aureus isolated from milk, North West Province South Africa. Antibiot 9:2020. https://doi.org/10.3390/antibiotics9040156

    Article  CAS  Google Scholar 

  46. Darwish SF, Asfour HAE (2013) Investigation of biofilm forming ability in staphylococci causing bovine mastitis using phenotypic and genotypic assays. Sci World J 2013:2013. https://doi.org/10.1155/2013/378492

    Article  CAS  Google Scholar 

  47. Notcovich S, DeNicolo G, Flint SH, Williamson NB, Gedye K, Grinberg A et al (2018) Biofilm-forming potential of Staphylococcus aureus isolated from bovine mastitis in new zealand. Vet Sci. https://doi.org/10.3390/vetsci5010008

    Article  PubMed  PubMed Central  Google Scholar 

  48. Castelani L, Pilon LE, Martins T, Pozzi CR, Arcaro JRP (2015) Investigation of biofilm production and icaA and icaD genes in Staphylococcus aureus isolated from heifers and cows with mastitis. Anim Sci J 86:340–344. https://doi.org/10.1111/asj.12284

    Article  CAS  PubMed  Google Scholar 

  49. Dhanawade NB, Kalorey DR, Srinivasan R, Barbuddhe SB, Kurkure NV (2010) Detsection of intercellular adhesion genes and biofilm production in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet Res Commun 34:81–89. https://doi.org/10.1007/s11259-009-9326-0

    Article  PubMed  Google Scholar 

  50. Rumi MV, Huguet MJ, Bentancor AB, Gentilini ER (2013) The icaA gene in staphylococci from bovine mastitis. J Infect Dev Ctries 7(7):556–560. https://doi.org/10.3855/jidc.2670

    Article  PubMed  Google Scholar 

  51. Jeykumar M, Vinodkumar G, Bashir BP, Krovvidi S (2013) Antibiogram of mastitis pathogens in the milk of crossbred cows in Namakkal district Tamilnadu. Vet World 6:354–356. https://doi.org/10.5455/vetworld.2013.354-356

    Article  CAS  Google Scholar 

  52. Preethirani PL, Isloor S, Sundareshan S, Nuthanalakshmi V, Deepthikiran K, Sinha AY et al (2015) Isolation, biochemical and molecular identification, and in-vitro antimicrobial resistance patterns of bacteria isolated from bubaline subclinical mastitis in South India. Plos One 10:1–15. https://doi.org/10.1371/journal.pone.0142717

    Article  CAS  Google Scholar 

  53. Paul S, Bezbaruah RL, Roy MK, Ghosh AC (1997) Multiple antibiotic resistance (MAR) index and its reversion in Pseudomonas aeruginosa. Lett Appl Microbiol 24:169–171. https://doi.org/10.1046/j.1472-765X.1997.00364.x

    Article  CAS  PubMed  Google Scholar 

  54. Shrestha A, Bhattarai RK, Luitel H, Karki S, Basnet HB (2021) Prevalence of methicillin-resistant Staphylococcus aureus and pattern of antimicrobial resistance in mastitis milk of cattle in Chitwan. Nepal BMC Vet Res 17:1–7. https://doi.org/10.1186/s12917-021-02942-6

    Article  CAS  Google Scholar 

  55. Coelho SMO, Reinoso E, Pereira IA, Soares LC, Demo M, Bogni C et al (2009) Virulence factors and antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis in Rio de Janeiro. Pesqui Vet Bras 29:369–374. https://doi.org/10.1590/s0100-736x2009000500002

    Article  Google Scholar 

  56. Ren Q, Liao G, Wu Z, Lv J, Chen W (2020) Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang China. J Dairy Sci 103:3368–3380. https://doi.org/10.3168/jds.2019-17420

    Article  CAS  PubMed  Google Scholar 

  57. Schmidt T, Kock MM, Ehlers MM (2015) Diversity and antimicrobial susceptibility profiling of staphylococci isolated from bovine mastitis cases and close human contacts. J Dairy Sci 98:6256–6269. https://doi.org/10.3168/jds.2015-9715

    Article  CAS  PubMed  Google Scholar 

  58. Greening SS, Zhang J, Midwinter AC, Wilkinson DA, McDougall S, Gates MC et al (2021) The genetic relatedness and antimicrobial resistance patterns of mastitis-causing staphylococcus aureus strains isolated from New Zealand dairy cattle. Vet Sci 8:287. https://doi.org/10.3390/vetsci8110287

    Article  PubMed  PubMed Central  Google Scholar 

  59. Spoor LE, McAdam PR, Weinert LA, Rambaut A, Hasman H, Aarestrup FM et al (2013) Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. MBio. https://doi.org/10.1128/mBio.00356-13

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fursova K, Sorokin A, Sokolov S, Dzhelyadin T, Shulcheva I, Shchannikova M et al (2020) Virulence factors and phylogeny of staphylococcus aureus associated with bovine mastitis in Russia based on genome sequences. Front Vet Sci 7:1–10. https://doi.org/10.3389/fvets.2020.00135

    Article  Google Scholar 

  61. Hoque MN, Das ZC, Rahman ANMA, Haider MG, Islam MA (2018) Molecular characterization of Staphylococcus aureus strains in bovine mastitis milk in Bangladesh. Int J Vet Sci Med 6:53–60. https://doi.org/10.1016/j.ijvsm.2018.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Molineri AI, Camussone C, Zbrun MV, Suárez Archilla G, Cristiani M, Neder V et al (2021) Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis: systematic review and meta-analysis. Prev Vet Med. https://doi.org/10.1016/j.prevetmed.2021.105261

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Dean, College of Veterinary Science and Animal Husbandry, Rewa for the research facilities provided.

Funding

The authors thank the MP Council of Science and Technology, Bhopal, MP, India (F. No.: R and D(BS)/17–18/19) for their support in the form of research grant.

Author information

Authors and Affiliations

Authors

Contributions

SR carried out sample collection, lab experiments, and writing of the manuscript. NS and AS gave design, supervision, and revision of the manuscript. SS and PKS supervised the research work and revised the article. AKN and RR contributed in lab experiments and manuscript writing. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Neeraj Shrivastava.

Ethics declarations

Conflict of interest

Authors do not have any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawat, S., Shrivastava, N., Shrivastav, A. et al. Isolation and Characterization of Staphylococcus aureus in Bovine Milk from Rewa, India. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01241-6

Keywords

Navigation