Skip to main content

Advertisement

Log in

Role of Gut Microbiota in Predisposition to Colon Cancer: A Narrative Review

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Globally, colorectal cancer (CRC) is a leading cause of cancer-related mortality. Dietary habits, inflammation, hereditary characteristics, and gut microbiota are some of its causes. The gut microbiota, a diverse population of bacteria living in the digestive system, has an impact on a variety of parameters, including inflammation, DNA damage, and immune response. The gut microbiome has a significant role in colon cancer susceptibility. Many studies have highlighted dysbiosis, an imbalance in the gut microbiota’s makeup, as a major factor in colon cancer susceptibility. Dysbiosis has the potential to produce toxic metabolites and pro-inflammatory substances, which can hasten the growth of tumours. The ability of the gut microbiota to affect the host’s immune system can also influence whether cancer develops or not. By better comprehending these complex interactions between colon cancer predisposition and gut flora, new preventive and therapeutic techniques might be developed. Targeting the gut microbiome with dietary modifications, probiotics, or faecal microbiota transplantation may offer cutting-edge approaches to reducing the risk of colon cancer and improving patient outcomes. The complex connection between the makeup of the gut microbiota and the emergence of colorectal cancer is explored in this narrative review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bürtin F, Mullins CS, Linnebacher M (2020) Mouse models of colorectal cancer: past, present and future perspectives. World J Gastroenterol 26:1394–1426. https://doi.org/10.3748/wjg.v26.i13.1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kersten K, de Visser KE, van Miltenburg MH, Jonkers J (2017) Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 9:137–53. https://doi.org/10.15252/emmm.201606857

    Article  CAS  PubMed  Google Scholar 

  3. Heijstek MW, Kranenburg O, Borel Rinkes IHM (2005) Mouse models of colorectal cancer and liver metastases. Dig Surg 22:16–25. https://doi.org/10.1159/000085342

    Article  CAS  PubMed  Google Scholar 

  4. Taketo MM, Edelmann W (2009) Mouse models of colon cancer. Gastroenterology 136:780–798. https://doi.org/10.1053/j.gastro.2008.12.049

    Article  CAS  PubMed  Google Scholar 

  5. O’Rourke KP, Loizou E, Livshits G et al (2017) Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat Biotechnol 35:577–582. https://doi.org/10.1038/nbt.3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McIntyre RE, Buczacki SJA, Arends MJ, Adams DJ (2015) Mouse models of colorectal cancer as preclinical models. BioEssays 37:909–920. https://doi.org/10.1002/bies.201500032

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16. https://doi.org/10.1242/dmm.017400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oliveira RC, Abrantes AM, Tralhão JG, Botelho MF (2020) The role of mouse models in colorectal cancer research-The need and the importance of the orthotopic models. Animal Model Exp Med 3:1–8. https://doi.org/10.1002/ame2.12102

    Article  PubMed  PubMed Central  Google Scholar 

  9. de la Cueva A, Ramírez de Molina A, Alvarez-Ayerza N et al (2013) Combined 5-FU and ChoKα inhibitors as a new alternative therapy of colorectal cancer: evidence in human tumor-derived cell lines and mouse xenografts. PLoS ONE 8:e64961. https://doi.org/10.1371/journal.pone.0064961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abuqayyas L, Balthasar JP (2012) Application of PBPK modeling to predict monoclonal antibody disposition in plasma and tissues in mouse models of human colorectal cancer. J Pharmacokinet Pharmacodyn 39:683–710. https://doi.org/10.1007/s10928-012-9279-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bradshaw-Pierce EL, Pitts TM, Kulikowski G et al (2013) Utilization of quantitative in vivo pharmacology approaches to assess combination effects of everolimus and irinotecan in mouse xenograft models of colorectal cancer. PLoS ONE 8:e58089. https://doi.org/10.1371/journal.pone.0058089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lim C, Broqueres-You D, Brouland JP et al (2013) Hepatic ischemia-reperfusion increases circulating bone marrow-derived progenitor cells and tumor growth in a mouse model of colorectal liver metastases. J Surg Res 184:888–897. https://doi.org/10.1016/j.jss.2013.04.069

    Article  PubMed  Google Scholar 

  13. Shen F, Li JL, Cai WS et al (2013) Interleukin-12 prevents colorectal cancer liver metastases in mice. Onco Targets Ther 6:523–526. https://doi.org/10.2147/OTT.S44161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sebolt-Leopold J (2018) Development of preclinical models to understand and treat colorectal cancer. Clin Colon Rectal Surg 31:199–204. https://doi.org/10.1055/s-0037-1602240

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mullins CS, Micheel B, Matschos S et al (2019) Integrated biobanking and tumor model establishment of human colorectal carcinoma provides excellent tools for preclinical research. Cancers 11:1520. https://doi.org/10.3390/cancers11101520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Young M, Ordonez L, Clarke AR (2013) What are the best routes to effectively model human colorectal cancer? Mol Oncol 7:178–189. https://doi.org/10.1016/j.molonc.2013.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  17. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS (2011) Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat Rev Cancer 11:135–141. https://doi.org/10.1038/nrc3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Priolli DG, Abrantes AM, Neves S, Batista JN, Cardinalli IA, Botelho MF (2012) A novel model of distal colon cancer in athymic mice. Acta Cir Bras 27:355–360. https://doi.org/10.1590/s0102-86502012000600001

    Article  PubMed  Google Scholar 

  19. Huang X, Zou Y, Lian L et al (2013) Changes of T cells and cytokines TGF-β1 and IL-10 in mice during liver metastasis of colon carcinoma: implications for liver anti-tumor immunity. J Gastrointest Surg 17:1283–1291. https://doi.org/10.1007/s11605-013-2194-5

    Article  PubMed  Google Scholar 

  20. Luca AC, Mersch S, Deenen R et al (2013) Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS ONE 8:e59689. https://doi.org/10.1371/journal.pone.0059689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kruse J, von Bernstorff W, Evert K et al (2013) Macrophages promote tumour growth and liver metastasis in an orthotopic syngeneic mouse model of colon cancer. Int J Colorectal Dis 28:1337–1349. https://doi.org/10.1007/s00384-013-1703-z

    Article  CAS  PubMed  Google Scholar 

  22. Mittal VK, Bhullar JS, Jayant K (2015) Animal models of human colorectal cancer: current status, uses and limitations. World J Gastroenterol 21:11854–11861. https://doi.org/10.3748/wjg.v21.i41.11854

    Article  PubMed  PubMed Central  Google Scholar 

  23. Katsiampoura A, Raghav K, Jiang ZQ et al (2017) Modeling of patient-derived xenografts in colorectal cancer. Mol Cancer Ther 16:1435–1442. https://doi.org/10.1158/1535-7163.MCT-16-0721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burgenske DM, Monsma DJ, Dylewski D et al (2014) Establishment of genetically diverse patient-derived xenografts of colorectal cancer. Am J Cancer Res 4:824–37

    PubMed  PubMed Central  Google Scholar 

  25. Caetano-Oliveira R, Gomes MA, Abrantes AM et al (2018) Revisiting colorectal cancer animal model-an improved metastatic model for distal rectosigmoid colon carcinoma. Pathophysiology 25:89–99. https://doi.org/10.1016/j.pathophys.2018.02.002

    Article  PubMed  Google Scholar 

  26. Bhome R, Goh RW, Bullock MD et al (2017) Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression. Aging 9:2666–94. https://doi.org/10.18632/aging.101355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Chen C, Wang S et al (2015) Bufalin inhibits HCT116 colon cancer cells and its orthotopic xenograft tumor in mice model through genes related to apoptotic and PTEN/AKT pathways. Gastroenterol Res Pract 2015:457193. https://doi.org/10.1155/2015/457193

    Article  PubMed  PubMed Central  Google Scholar 

  28. Buc E, Dubois D, Sauvanet P et al (2013) High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 8:e56964. https://doi.org/10.1371/journal.pone.0056964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Collins D, Hogan AM, Winter DC (2011) Microbial and viral pathogens in colorectal cancer. Lancet Oncol 12:504–512. https://doi.org/10.1016/S1470-2045(10)70186-8

    Article  CAS  PubMed  Google Scholar 

  30. Chen YS, Li J, Menon R et al (2021) Dietary spinach reshapes the gut microbiome in an Apc-mutant genetic background: mechanistic insights from integrated multi-omics. Gut Microbes 13:1972756. https://doi.org/10.1080/19490976.2021.1972756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilkinson JE, Franzosa EA, Everett C et al (2021) A framework for microbiome science in public health. Nat Med 27:766–774. https://doi.org/10.1038/s41591-021-01258-0

    Article  CAS  PubMed  Google Scholar 

  32. Dai Z, Coker OO, Nakatsu G et al (2018) Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. https://doi.org/10.1186/s40168-018-0451-2

    Article  PubMed  PubMed Central  Google Scholar 

  33. He Y, Wu W, Zheng HM et al (2018) Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24:1532–1535. https://doi.org/10.1038/s41591-018-0164-x

    Article  CAS  PubMed  Google Scholar 

  34. Peters BA, Dominianni C, Shapiro JA et al (2016) The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome. https://doi.org/10.1186/s40168-016-0218-6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Flemer B, Lynch DB, Brown JMR et al (2017) Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66:633–643. https://doi.org/10.1136/gutjnl-2015-309595

    Article  CAS  PubMed  Google Scholar 

  36. Feng Q, Liang S, Jia H et al (2015) Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat Commun 6:6528. https://doi.org/10.1038/ncomms7528

    Article  CAS  PubMed  Google Scholar 

  37. Abu-Ghazaleh N, Chua WJ, Gopalan V (2021) Intestinal microbiota and its association with colon cancer and red/processed meat consumption: microbiota, meat and colon cancers. J Gastroenterol Hepatol 36:75–88. https://doi.org/10.1111/jgh.15042

    Article  CAS  PubMed  Google Scholar 

  38. Kostic AD, Chun E, Robertson L et al (2013) Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–215. https://doi.org/10.1016/j.chom.2013.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yachida S, Mizutani S, Shiroma H et al (2019) Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med 25:968–976. https://doi.org/10.1038/s41591-019-0458-7

    Article  CAS  PubMed  Google Scholar 

  40. Kostic AD, Gevers D, Pedamallu CS et al (2012) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:292–298. https://doi.org/10.1101/gr.126573.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Y, Weng W, Peng J et al (2017) Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear Factor−κB, and up-regulating expression of MicroRNA-21. Gastroenterology 152:851-866.e24. https://doi.org/10.1053/j.gastro.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  42. Wu S, Rhee KJ, Albesiano E et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–1022. https://doi.org/10.1038/nm.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu S, Lim KC, Huang J, Saidi RF, Sears CL (1998) Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci USA 95:14979–14984. https://doi.org/10.1073/pnas.95.25.14979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim JM, Jung HY, Lee JY, Youn J, Lee CH, Kim KH (2005) Mitogen-activated protein kinase and activator protein-1 dependent signals are essential for Bacteroides fragilis enterotoxin-induced enteritis. Eur J Immunol 35:2648–2657. https://doi.org/10.1002/eji.200526321

    Article  CAS  PubMed  Google Scholar 

  45. Arthur JC, Perez-Chanona E, Mühlbauer M et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123. https://doi.org/10.1126/science.1224820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP (2010) Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA 107:11537–11542. https://doi.org/10.1073/pnas.1001261107

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smith JL, Bayles DO (2006) The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol 32:227–248. https://doi.org/10.1080/10408410601023557

    Article  CAS  PubMed  Google Scholar 

  48. Lara-Tejero M, Galán JE (2002) Cytolethal distending toxin: limited damage as a strategy to modulate cellular functions. Trends Microbiol 10:147–152. https://doi.org/10.1016/s0966-842x(02)02316-8

    Article  CAS  PubMed  Google Scholar 

  49. Doye A, Mettouchi A, Bossis G et al (2002) CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111:553–564. https://doi.org/10.1016/s0092-8674(02)01132-7

    Article  CAS  PubMed  Google Scholar 

  50. Falzano L, Quaranta MG, Travaglione S et al (2003) Cytotoxic necrotizing factor 1 enhances reactive oxygen species-dependent transcription and secretion of proinflammatory cytokines in human uroepithelial cells. Infect Immun 71:4178–4181. https://doi.org/10.1128/IAI.71.7.4178-4181.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boyer L, Travaglione S, Falzano L et al (2004) Rac GTPase instructs nuclear factor-κB activation by conveying the SCF complex and IkBα to the ruffling membranes. Mol Biol Cell 15:1124–1133. https://doi.org/10.1091/mbc.e03-05-0301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Giamboi-Miraglia A, Travaglione S, Filippini P, Fabbri A, Fiorentini C, Falzano L (2007) A multinucleating Escherichia coli cytotoxin perturbs cell cycle in cultured epithelial cells. Toxicol In Vitro 21:235–239. https://doi.org/10.1016/j.tiv.2006.08.013

    Article  CAS  PubMed  Google Scholar 

  53. Fiorentini C, Matarrese P, Straface E et al (1998) Rho-dependent cell spreading activated by E. coli cytotoxic necrotizing factor 1 hinders apoptosis in epithelial cells. Cell Death Differ 5:921–9. https://doi.org/10.1038/sj.cdd.4400422

    Article  CAS  PubMed  Google Scholar 

  54. McCOY WC, Mason JM 3rd (1951) Enterococcal endocarditis associated with carcinoma of the sigmoid; report of a case. J Med Assoc State Ala 21:162–166

    CAS  PubMed  Google Scholar 

  55. Klein RS, Catalano MT, Edberg SC, Casey JI, Steigbigel NH (1979) Streptococcus bovis septicemia and carcinoma of the colon. Ann Intern Med 91:560–562. https://doi.org/10.7326/0003-4819-91-4-560

    Article  CAS  PubMed  Google Scholar 

  56. Hoppes WL, Lerner PI (1974) Nonenterococcal group-D streptococcal endocarditis caused by Streptococcus bovis. Ann Intern Med 81:588–593. https://doi.org/10.7326/0003-4819-81-5-588

    Article  CAS  PubMed  Google Scholar 

  57. Deng Q, Wang C, Yu K et al (2020) Streptococcus bovis contributes to the development of colorectal cancer via recruiting CD11b+TLR-4+ cells. Med Sci Monit 26:e921886. https://doi.org/10.12659/msm.921886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abdulamir AS, Hafidh RR, Mahdi LK, Al-jeboori T, Abubaker F (2009) Investigation into the controversial association of Streptococcus gallolyticus with colorectal cancer and adenoma. BMC Cancer 9:403. https://doi.org/10.1186/1471-2407-9-403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abdulamir AS, Hafidh RR, Bakar FA (2010) Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol Cancer 9:249. https://doi.org/10.1186/1476-4598-9-249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martins M, Porrini C, du Merle L et al (2016) The Pil3 pilus of Streptococcus gallolyticus binds to intestinal mucins and to fibrinogen. Gut Microbes 7:526–532. https://doi.org/10.1080/19490976.2016.1239677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bezawada N, Song M, Wu K et al (2014) Urinary PGE-M levels are associated with risk of colorectal adenomas and chemopreventive response to anti-inflammatory drugs. Cancer Prev Res 7:758–765. https://doi.org/10.1158/1940-6207.CAPR-14-0120

    Article  CAS  Google Scholar 

  62. Butt J, Varga MG, Blot WJ et al (2019) Serologic response to Helicobacter pylori proteins associated with risk of colorectal cancer among diverse populations in the United States. Gastroenterology 156:175-186.e2. https://doi.org/10.1053/j.gastro.2018.09.054

    Article  PubMed  Google Scholar 

  63. McClain M, Beckett A, Cover T (2017) Helicobacter pylori vacuolating toxin and gastric cancer. Toxins 9:316. https://doi.org/10.3390/toxins9100316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kountouras J, Zavos C, Chatzopoulos D, Katsinelos P (2008) New aspects of Helicobacter pylori infection involvement in gastric oncogenesis. J Surg Res 146:149–158. https://doi.org/10.1016/j.jss.2007.06.011

    Article  PubMed  Google Scholar 

  65. Thorburn CM, Friedman GD, Dickinson CJ, Vogelman JH, Orentreich N, Parsonnet J (1998) Gastrin and colorectal cancer: a prospective study. Gastroenterology 115:275–280. https://doi.org/10.1016/s0016-5085(98)70193-3

    Article  CAS  PubMed  Google Scholar 

  66. Strofilas A, Lagoudianakis EE, Seretis C et al (2012) Association of helicobacter pylori infection and colon cancer. J Clin Med Res 4:172–176. https://doi.org/10.4021/jocmr880w

    Article  PubMed  PubMed Central  Google Scholar 

  67. Davenport JR, Cai Q, Ness RM et al (2016) Evaluation of pro-inflammatory markers plasma C-reactive protein and urinary prostaglandin-E2 metabolite in colorectal adenoma risk. Mol Carcinog 55:1251–1261. https://doi.org/10.1002/mc.22367

    Article  CAS  PubMed  Google Scholar 

  68. Cai Q, Gao YT, Chow WH et al (2006) Prospective study of urinary prostaglandin E2 metabolite and colorectal cancer risk. J Clin Oncol 24:5010–5016. https://doi.org/10.1200/JCO.2006.06.4931

    Article  CAS  PubMed  Google Scholar 

  69. Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM (2012) 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by Enterococcus faecalis-infected macrophages. Gastroenterology 142:543–551. https://doi.org/10.1053/j.gastro.2011.11.020

    Article  CAS  PubMed  Google Scholar 

  70. Huycke MM, Abrams V, Moore DR (2002) Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis 23:529–536. https://doi.org/10.1093/carcin/23.3.529

    Article  CAS  PubMed  Google Scholar 

  71. Wang X, Huycke MM (2007) Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 132:551–561. https://doi.org/10.1053/j.gastro.2006.11.040

    Article  CAS  PubMed  Google Scholar 

  72. Wang X, Allen TD, May RJ, Lightfoot S, Houchen CW, Huycke MM (2008) Enterococcus faecalis induces aneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Res 68:9909–9917. https://doi.org/10.1158/0008-5472.CAN-08-1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Y, Wang X, Moore DR, Lightfoot SA, Huycke MM (2012) TNF-α mediates macrophage-induced bystander effects through Netrin-1. Cancer Res 72:5219–5229. https://doi.org/10.1158/0008-5472.CAN-12-1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Boonanantanasarn K, Gill AL, Yap Y, Jayaprakash V, Sullivan MA, Gill SR (2012) Enterococcus faecalis enhances cell proliferation through hydrogen peroxide-mediated epidermal growth factor receptor activation. Infect Immun 80:3545–3558. https://doi.org/10.1128/iai.00479-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Dalen PJ, van Steenbergen TJ, Cowan MM, Busscher HJ, de Graaff J (1993) Description of two morphotypes of Peptostreptococcus micros. Int J Syst Bacteriol 43:787–793. https://doi.org/10.1099/00207713-43-4-787

    Article  PubMed  Google Scholar 

  76. Xu J, Yang M, Wang D et al (2020) Alteration of the abundance of Parvimonas micra in the gut along the adenoma-carcinoma sequence. Oncol Lett 20:106. https://doi.org/10.3892/ol.2020.11967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Loftus M, Hassouneh SAD, Yooseph S (2021) Bacterial community structure alterations within the colorectal cancer gut microbiome. BMC Microbiol 21:98. https://doi.org/10.1186/s12866-021-02153-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhao L, Zhang X, Zhou Y, Fu K, Lau HCH, Chun TWY et al (2022) Parvimonas micra promotes colorectal tumorigenesis and is associated with prognosis of colorectal cancer patients. Oncogene 41:4200–4210. https://doi.org/10.1038/s41388-022-02395-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lo CH, Wu DC, Jao SW et al (2022) Enrichment of Prevotella intermedia in human colorectal cancer and its additive effects with Fusobacterium nucleatum on the malignant transformation of colorectal adenomas. J Biomed Sci 29:88. https://doi.org/10.1186/s12929-022-00869-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fenner L, Roux V, Ananian P, Raoult D (2007) Alistipes finegoldii in blood cultures from colon cancer patients. Emerg Infect Dis 13:1260–1262. https://doi.org/10.3201/eid1308.060662

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lin Y, Lau HC-H, Liu Y et al (2022) Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology 163:908–921. https://doi.org/10.1053/j.gastro.2022.06.038

    Article  CAS  PubMed  Google Scholar 

  82. Moyes DL, Naglik JR (2012) The mycobiome: influencing IBD severity. Cell Host Microbe 11:551–552. https://doi.org/10.1016/j.chom.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  83. Qin X, Gu Y, Liu T et al (1875) (2021) Gut mycobiome: a promising target for colorectal cancer. Biochim Biophys Acta Rev Cancer 1:188489. https://doi.org/10.1016/j.bbcan.2020.188489

    Article  CAS  Google Scholar 

  84. Marongiu L, Allgayer H (2022) Viruses in colorectal cancer. Mol Oncol 16:1423–1450. https://doi.org/10.1002/1878-0261.13100\

    Article  CAS  PubMed  Google Scholar 

  85. HPV and cancer. National Cancer Institute (2019). https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-and-cancer. Accessed 3 February 2024

  86. Boguszakova L, Hirsch I, Brichacek B et al (1988) Absence of cytomegalovirus, Epstein-Barr virus, and papillomavirus DNA from adenoma and adenocarcinoma of the colon. Acta Virol 32:303–308

    CAS  PubMed  Google Scholar 

  87. Koulos J, Symmans F, Chumas J et al (1991) Human papillomavirus detection in adenocarcinoma of the anus. Mod Pathol 4:58–61

    CAS  PubMed  Google Scholar 

  88. Shah KV, Daniel RW, Simons JW et al (1992) Investigation of colon cancers for human papillomavirus genomic sequences by polymerase chain reaction. J Surg Oncol 51:5–7. https://doi.org/10.1002/jso.2930510104

    Article  CAS  PubMed  Google Scholar 

  89. Ramprasad C, Major VJ, Zhang Y et al (2019) 293 receptive anal sex in women and risk of colorectal cancer (2009–2014): a retrospective analysis of NHANES: 293. Am J Gastroenterol 114:S170. https://doi.org/10.14309/01.ajg.0000590704.93495.66

    Article  Google Scholar 

  90. Burnett-Hartman AN, Newcomb PA, Potter JD (2008) Infectious agents and colorectal cancer: a review of Helicobacter pylori, Streptococcus bovis, JC virus, and human papillomavirus. Cancer Epidemiol Biomarkers Prev 17:2970–2979. https://doi.org/10.1158/1055-9965.EPI-08-05711

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chuang L-C, Chen H-C, You S-L et al (2010) Association between human papillomavirus and adenocarcinoma of rectum and recto-sigmoid junction: a cohort study of 10,612 women in Taiwan. Cancer Causes Control 21:2123–2128. https://doi.org/10.1007/s10552-010-9631-5

    Article  PubMed  Google Scholar 

  92. Chaturvedi AK, Engels EA, Gilbert ES et al (2007) Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst 99:1634–1643. https://doi.org/10.1093/jnci/djm201

    Article  PubMed  Google Scholar 

  93. Chan DSM, Lau R, Aune D et al (2011) Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE 6:e20456. https://doi.org/10.1371/journal.pone.0020456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Song M, Garrett WS, Chan AT (2015) Nutrients, foods, and colorectal cancer prevention. Gastroenterology 148:1244–60.e16. https://doi.org/10.1053/j.gastro.2014.12.035

    Article  CAS  PubMed  Google Scholar 

  95. Sonnenburg JL, Bäckhed F (2016) Diet–microbiota interactions as moderators of human metabolism. Nature 535:56–64. https://doi.org/10.1038/nature18846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Singh N, Gurav A, Sivaprakasam S et al (2014) Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–139. https://doi.org/10.1016/j.immuni.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bultman SJ (2017) Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res 61:1500902. https://doi.org/10.1002/mnfr.201500902

    Article  CAS  Google Scholar 

  98. Zackular JP, Baxter NT, Iverson KD et al (2013) The gut microbiome modulates colon tumorigenesis. MBio 4:e00692-e713. https://doi.org/10.1128/mBio.00692-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T (2019) Microbiome and colorectal cancer: roles in carcinogenesis and clinical potential. Mol Aspects Med 69:93–106. https://doi.org/10.1016/j.mam.2019.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Montalban-Arques A, Scharl M (2019) Intestinal microbiota and colorectal carcinoma: implications for pathogenesis, diagnosis, and therapy. EBioMedicine 48:648–655. https://doi.org/10.1016/j.ebiom.2019.09.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zou S, Fang L, Lee MH (2018) Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep 6:1–12. https://doi.org/10.1093/gastro/gox031

    Article  Google Scholar 

  102. Wong SH, Yu J (2019) Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol 16:690–704. https://doi.org/10.1038/s41575-019-0209-8

    Article  CAS  PubMed  Google Scholar 

  103. Ternes D, Karta J, Tsenkova M, Wilmes P, Haan S, Letellier E (2020) Microbiome in colorectal cancer: how to get from meta-omics to mechanism? Trends Microbiol 28:401–423. https://doi.org/10.1016/j.tim.2020.01.001

    Article  CAS  PubMed  Google Scholar 

  104. Singh S, Sharma P, Sarma DK et al (2023) Implication of obesity and gut microbiome dysbiosis in the etiology of colorectal cancer. Cancers 15:1913. https://doi.org/10.3390/cancers15061913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chattopadhyay I, Dhar R, Pethusamy K et al (2021) Exploring the role of gut microbiome in colon cancer. Appl Biochem Biotechnol 193:1780–1799. https://doi.org/10.1007/s12010-021-03498-9

    Article  CAS  PubMed  Google Scholar 

  106. de Souza JB, Brelaz-de-Castro MCA, Cavalcanti IMF (2022) Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sci 290:120202. https://doi.org/10.1016/j.lfs.2021.120202

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hattiangadi Shruthi Kamath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamath, H.S., Shukla, R., Shah, U. et al. Role of Gut Microbiota in Predisposition to Colon Cancer: A Narrative Review. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01242-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01242-5

Keywords

Navigation