Skip to main content
Log in

Well-posedness of short time solutions and non-uniform dependence on the initial data for a shallow water wave model in critical Besov space

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

A nonlinear shallow water wave equation containing the famous Degasperis-Procesi and Fornberg-Whitham equations is investigated. The well-posedness of short time solutions is established to illustrate that the solution map of the equation is continuous in the critical Besov space \(B^{1}_{\infty ,1}(\mathbb {R})\). Using the methods to construct high and low frequency functions, we prove that the solution map of the equation is non-uniform continuous dependence on the initial data in \(B^{1}_{\infty ,1}(\mathbb {R})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  Google Scholar 

  2. Chen, R.M., Gui, G., Liu, Y.: On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect. Adv. Math. 340, 106–137 (2018)

    Article  MathSciNet  Google Scholar 

  3. Christov, O., Hakkaev, S.: On the Cauchy problem for the periodic b-family of equations and of the non-uniform continuity of Degasperis-Procesi equation. J. Math. Anal. Appl. 360, 47–56 (2009)

    Article  MathSciNet  Google Scholar 

  4. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  5. Constantin, A.: On the scattering problem for the Camassa-Holm equation. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 953-970 (2001)

  6. Constantin, A.: The Hamiltonian structure of the Camassa–Holm equation. Expos. Math. 15, 53–85 (1997)

    MathSciNet  Google Scholar 

  7. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50, 321–362 (2000)

    Article  MathSciNet  Google Scholar 

  8. Constantin, A., Escher, J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyper-bolic equation. Commun. Pure Appl. Math. 51, 475–504 (1998)

    Article  Google Scholar 

  9. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  10. Constantin, A., Kolev, B.: Integrability of invariant metrics on the diffeomorphism group of the circle. J. Nonlinear Sci. 16, 109–122 (2006)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  12. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  MathSciNet  Google Scholar 

  13. Constantin, A., Ivanov, R.I., Lenells, J.: Inverse scattering transform for the Degasperis-Procesi equation. Nonlinearity 23, 2559–2575 (2010)

    Article  MathSciNet  Google Scholar 

  14. Danchin, R.: A few remarks on the Camassa-Holm equation. Differ. Integ. Equ. 14, 953–988 (2001)

    MathSciNet  Google Scholar 

  15. Degasperis, A., Procesi, M.: Asymptotic integrability. In: Symmetry and Perturbation Theory. (Rome, 1998). World Scientific Publishing Company, Rivers Edge, NJ, pp. 23-37 (1999)

  16. Degasperis, A., Holm, D.D., Hone, A.N.W.: A new integral equation with peakon solutions. Theoret. Math. Phys. 133, 1463–1474 (2002)

    Article  MathSciNet  Google Scholar 

  17. Escher, J., Liu, Y., Yin, Z.: Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation. Indiana Univ. Math. J. 56, 87–177 (2007)

    Article  MathSciNet  Google Scholar 

  18. Escher, J., Liu, Y., Yin, Z.: Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal. 241, 457–485 (2006)

    Article  MathSciNet  Google Scholar 

  19. Escher, J., Kolev, B.: The Degasperis-Procesi equation as a non-metric Euler equation. Math. Z. 269, 1137–1153 (2011)

    Article  MathSciNet  Google Scholar 

  20. Fornberg, G., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. R. Soc. A 289, 373–404 (1978)

    MathSciNet  Google Scholar 

  21. Fu, Y.G., Liu, Z.R.: Non-uniform dependence on initial data for the periodic Degasperis-Procesi equation. J. Math. Anal. Appl. 384, 293–302 (2011)

    Article  MathSciNet  Google Scholar 

  22. Guo, Y.Y.: The well-posedness, ill-posedness and non-uniform dependence on initial data for the Fornberg-Whitham equation in Besov spaces. Nonl. Anal. (RWA). 70, 103791 (2023)

  23. Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Differ. Integ. Equ. 22, 201–224 (2009)

    MathSciNet  Google Scholar 

  24. Himonas, A., Kenig, C., Misiolek, G.: Non-uniform dependence for the periodic CH equation. Commun. PDE. 35, 1145–1162 (2010)

    Article  MathSciNet  Google Scholar 

  25. Holmes, J.: Well-posedness of the Fornberg-Whitham equation on the circle. J. Differ. Equ. 260(12), 8530–8549 (2016)

    Article  MathSciNet  Google Scholar 

  26. Holmes, J., Thompson, R.C.: Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces. J. Differ. Equ. 263(7), 4355–4381 (2017)

    Article  MathSciNet  Google Scholar 

  27. Hörmann, G.: Discontinuous traveling waves as weak solutions to the Fornberg-Whitham equation. J. Differ. Equ. 265, 2825–2841 (2018)

    Article  MathSciNet  Google Scholar 

  28. Hörmann, G.: Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation. Monatsh. Math. 195, 421–449 (2021)

    Article  MathSciNet  Google Scholar 

  29. Lenells, J.: Traveling wave solutions of the Degasperis-Procesi equation. J. Math. Anal. Appl. 306, 72–82 (2005)

    Article  MathSciNet  Google Scholar 

  30. Li, J.L., Yu, Y.H., Zhu, W.P.: Well-posedness and continuity properties of the Degasperis-Procesi equation in critical Besov space. Monatsh. Math. 200(2), 301–313 (2023)

    Article  MathSciNet  Google Scholar 

  31. Li, J.L., Yu, Y.H., Zhu, W.P.: Non-uniform dependence on initial data for the Camassa-Holm equation in Besov spaces. J. Differ. Equ. 269, 8686–8700 (2020)

    Article  MathSciNet  Google Scholar 

  32. Li, J., Yin, Z.: Remarks on the well-posedness of Camassa-Holm type equations in Besov spaces. J. Differ. Equ. 261, 6125–6143 (2016)

    Article  MathSciNet  Google Scholar 

  33. Li, J.L., Xu, X., Yu, Y.H., Zhu, W.P.: Non-uniform dependence on initial data for the Camassa-Holm equation in the critical Besov space. J. Math. Fluid Mech. 23, 1–11 (2021)

    Article  MathSciNet  Google Scholar 

  34. Liu, Y., Yin, Z.: Global existence and blow-up phenomena for the Degasperis-Procesi equation. Commun. Math. Phys. 267, 801–820 (2006)

    Article  MathSciNet  Google Scholar 

  35. Miao, C.X., Wu, J.H., Zhang, Z.F.: Littlewood Paley Theory and Its Application to the Equations of Fluid Dynamics. China Science Publishing and Media Ltd, Beijing (2012)

    Google Scholar 

  36. Vakhnenko, V.O., Parkes, E.J.: Periodic and solitary-wave solutions of the Degasperis-Procesi equation. Chaos, Solitons Fractals 20, 1059–1073 (2004)

    Article  MathSciNet  Google Scholar 

  37. Wei, L.: New wave-breaking criteria for the Fornberg-Whitham equation. J. Differ. Equ. 280, 571–589 (2021)

    Article  MathSciNet  Google Scholar 

  38. Wei, L.: Notes on wave-breaking phenomena for a Fornberg-Whitham-type equation. J. Differ. Equ. 362, 250–265 (2023)

    Article  MathSciNet  Google Scholar 

  39. Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. Lond. A 299, 6–25 (1967)

    Article  Google Scholar 

  40. Wu, X.L., Zhang, Z.: On the blow-up of solutions for the Fornberg-Whitham equation. Nonl. Anal. (RWA). 44, 573-588 (2018)

  41. Yin, Z.: On the Cauchy problem for an integrable equation with peakon solutions. Illinois J. Math. 47, 649–666 (2003)

    Article  MathSciNet  Google Scholar 

  42. Yin, Z.: Global existence for a new periodic integrable equation. J. Math. Anal. Appl. 283, 129–139 (2003)

    Article  MathSciNet  Google Scholar 

  43. Yin, Z.: Global solutions to a new integrable equation with peakons. Indiana Univ. Math. J. 53, 1189–1210 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Thanks are given to the reviewers for their valuable suggestions, which lead to the meaningful improvement of the paper. This work is supported by National Nature Science Foundation of China (No. 12361042) and 14th Five Years’ Key Discipline of Xinjiang Uygur Autonomous Region (No. 83451378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Xiao.

Ethics declarations

Conflicts of interest

The authors declare that they have no Conflict of interest.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Xiao, H. & Lai, S. Well-posedness of short time solutions and non-uniform dependence on the initial data for a shallow water wave model in critical Besov space. Monatsh Math (2024). https://doi.org/10.1007/s00605-024-01959-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00605-024-01959-x

Keywords

Mathematics Subject Classification

Navigation