Skip to main content
Log in

Tunable near-field radiative heat transfer with the shear polariton in three-body low-symmetry crystals

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The singularity optical phenomena induced by broken symmetry within crystals have recently received widespread attention. In particular, the shear polaritons supported by low-symmetry crystal can improve the controllability of light propagation direction, making them have great potential for application in thermophotonics research. In this paper, we theoretically studied the near-field thermal radiation (NFTR) behavior of a three-body monoclinic crystal system. It is found that three-body systems can enhance NFTR over a wide frequency range by several orders of magnitude beyond the blackbody radiation limit, and the relative rotation of the middle body can play a role manipulation the NFTR between two low-symmetry crystal semi-infinite plates, in particular, the appearance of shear effect in low-symmetry crystals enhances the in-plane anisotropy of the twist-induced NFTR, providing extra approach for harnessing the NFTR of the system. We believe that the enhancement and control scheme of NFTR in the three-body systems can find potential applications in the fields of the realm of nanoscale thermal management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Author’s comment: The datasets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.].

References

  1. D. Polder, M. Van Hove, Theory of radiative heat transfer between closely spaced bodies. Phys. Rev. B 4(10), 3303 (1971)

    Article  ADS  Google Scholar 

  2. J. Zou, C. Buckley, H. Shao, G. Ji, K. Zhang, Light-metal-based nanostructures for energy and biomedical applications. J. Nanomater. 2013, 6–6 (2013)

    Article  Google Scholar 

  3. J.J. Loomis, H.J. Maris, Theory of heat transfer by evanescent electromagnetic waves. Phys. Rev. B 50(24), 18517 (1994)

    Article  ADS  Google Scholar 

  4. B. Zhao, K. Chen, S. Buddhiraju, G. Bhatt, M. Lipson, S. Fan, High-performance near-field thermophotovoltaics for waste heat recovery. Nano Energy 41, 344–350 (2017)

    Article  Google Scholar 

  5. L. Zhu, C.R. Otey, S. Fan, Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles. Phys. Rev. B 88(18), 184301 (2013)

    Article  ADS  Google Scholar 

  6. P. Ben-Abdallah, S.-A. Biehs, Near-field thermal transistor. Phys. Rev. Lett. 112(4), 044301 (2014)

    Article  ADS  Google Scholar 

  7. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, J.-J. Greffet, Thermal radiation scanning tunnelling microscopy. Nature 444(7120), 740–743 (2006)

    Article  ADS  Google Scholar 

  8. C. Zhou, Y. Zhang, L. Qu, H.-L. Yi, Near-field negative electroluminescent cooling via nanoparticle doping. J. Quant. Spectrosc. Radiat. Transf. 245, 106889 (2020)

    Article  Google Scholar 

  9. J.-B. Xu, K. Läuger, R. Möller, K. Dransfeld, I. Wilson, Heat transfer between two metallic surfaces at small distances. J. Appl. Phys. 76(11), 7209–7216 (1994)

    Article  ADS  Google Scholar 

  10. J.E. Pérez-Rodríguez, G. Pirruccio, R. Esquivel-Sirvent, Revisiting the surface impedance and effective medium models applied to near-field radiative heat transfer. Phys. Status Solidi (B) 257(5), 1900498 (2020)

    Article  ADS  Google Scholar 

  11. J. Song, Q. Cheng, L. Lu, B. Li, K. Zhou, B. Zhang, Z. Luo, X. Zhou, Magnetically tunable near-field radiative heat transfer in hyperbolic metamaterials. Phys. Rev. Appl. 13(2), 024054 (2020)

    Article  ADS  Google Scholar 

  12. J. Zhang, B. Yang, K. Yu, K. Zhang, H. Liu, X. Wu, Substrate effects on the near-field radiative heat transfer between two hbn films. AIP Adv. 13(4), 045315 (2023)

    Article  ADS  Google Scholar 

  13. H. Liu, K. Yu, K. Zhang, Q. Ai, M. Xie, X. Wu, Effect of substrate on the near-field radiative heat transfer between α-moo3 films. Int. J. Heat Mass Transf. 210, 124206 (2023)

    Article  Google Scholar 

  14. J. Zhang, B. Yang, K. Shi, H. Liu, X. Wu, Polariton hybridization phenomena on near-field radiative heat transfer in periodic graphene/α-moo3 cells. Nanophotonics 12(10), 1833–1846 (2023)

    Article  Google Scholar 

  15. J. Dong, W. Zhang, L. Liu, Nonreciprocal thermal radiation of nanoparticles via spin-directional coupling with reciprocal surface modes. Appl. Phys. Lett. 119(2), 021104 (2021)

    Article  ADS  Google Scholar 

  16. E. Moncada-Villa, J.C. Cuevas, Magnetic field effects in the near-field radiative heat transfer between planar structures. Phys. Rev. B 101(8), 085411 (2020)

    Article  ADS  Google Scholar 

  17. G. Xu, J. Sun, H. Mao, Z. Cao, X. Ma, Modulating near-field radiative heat transfer through thin dirac semimetal films. Nanoscale Microscale Thermophys. Eng. 25(2), 101–115 (2021)

    Article  ADS  Google Scholar 

  18. L. Zhang, O.D. Miller, Optimal materials for maximum large-area near-field radiative heat transfer. ACS Photon. 7(11), 3116–3129 (2020)

    Article  Google Scholar 

  19. S. McSherry, A. Lenert, Extending the thermal near field through compensation in hyperbolic waveguides. Phys. Rev. Appl. 14(1), 014074 (2020)

    Article  ADS  Google Scholar 

  20. X. Wu, C. Fu, Z. Zhang, Influence of hbn orientation on the near-field radiative heat transfer between graphene/hbn heterostructures. J. Photon. Energy 9(3), 032702–032702 (2019)

    ADS  Google Scholar 

  21. Y. Zhang, H.-L. Yi, H.-P. Tan, Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons. ACS Photon. 5(9), 3739–3747 (2018)

    Article  Google Scholar 

  22. M. He, H. Qi, Y. Ren, Y. Zhao, M. Antezza, Active control of near-field radiative heat transfer by a graphene-gratings coating-twisting method. Opt. Lett. 45(10), 2914–2917 (2020)

    Article  ADS  Google Scholar 

  23. R. Messina, M. Antezza, P. Ben-Abdallah, Three-body amplification of photon heat tunneling. Phys. Rev. Lett. 109(24), 244302 (2012)

    Article  ADS  Google Scholar 

  24. Z. Zheng, Y. Xuan, Enhancement or suppression of the near-field radiative heat transfer between two materials. Nanoscale Microscale Thermophys. Eng. 15(4), 237–251 (2011)

    Article  ADS  Google Scholar 

  25. M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Schöche, V. Darakchieva, E. Janzén, B. Monemar, D. Gogova, Q.-T. Thieu et al., Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93(12), 125209 (2016)

    Article  ADS  Google Scholar 

  26. N.C. Passler, X. Ni, G. Hu, J.R. Matson, G. Carini, M. Wolf, M. Schubert, A. Alù, J.D. Caldwell, T.G. Folland et al., Hyperbolic shear polaritons in low-symmetry crystals. Nature 602(7898), 595–600 (2022)

    Article  ADS  Google Scholar 

  27. C.-L. Zhou, G. Tang, Y. Zhang, M. Antezza, H.-L. Yi, Radiative heat transfer in a low-symmetry bravais crystal. Phys. Rev. B 106(15), 155404 (2022)

    Article  ADS  Google Scholar 

  28. L. Qu, E. Moncada-Villa, J.-L. Fang, Y. Zhang, H.-L. Yi, Tunable magnetic field effects on the near-field radiative heat transfer in planar three-body systems. Phys. Rev. B 107(20), 205405 (2023)

    Article  ADS  Google Scholar 

  29. K. Chen, B. Zhao, S. Fan, Mesh: a free electromagnetic solver for far-field and near-field radiative heat transfer for layered periodic structures. Comput. Phys. Commun. 231, 163–172 (2018)

    Article  ADS  Google Scholar 

  30. D. Whittaker, I. Culshaw, Scattering-matrix treatment of patterned multilayer photonic structures. Phys. Rev. B 60(4), 2610 (1999)

    Article  ADS  Google Scholar 

  31. S.M. Rytov, Y.A. Kravtsov, V.I. Tatarskii, Principles of Statistical Radiophysics 3—Elements of Random Fields (Springer, Berlin, 1989)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (No. 62375084), the Natural Science Foundation of Hunan Province (Grant No.2022JJ30394, 2021JJ30135 and 2021JJ30149), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 21B0048), the Changsha Natural Science Foundation (Grant No. kq2202236), and the Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-MSX0872)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leyong Jiang or Yuanjiang Xiang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Dai, X., Jiang, L. et al. Tunable near-field radiative heat transfer with the shear polariton in three-body low-symmetry crystals. Eur. Phys. J. Plus 139, 299 (2024). https://doi.org/10.1140/epjp/s13360-024-05087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05087-1

Navigation