Skip to main content
Log in

Dynamics of vortex beams on stimulated Raman scattering in plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study explores vortex beam dynamics in the context of stimulated Raman scattering (SRS) in plasma. A thorough analysis is conducted to investigate the influence of vortex beams on plasma electron oscillations and wave generation, including a detailed examination of the relevant equations. Dispersion relations and growth rates, especially in relation to different azimuthal eigenmodes, are discussed. These discoveries contribute to more profound understanding of the dynamics of vortex beams within plasma during SRS, providing valuable insights that can be applied across diverse scientific fields. The results show that with the increase of the azimuthal value, significant trends emerge in the normalized frequency. Furthermore, the growth rate of SRS demonstrates an initial ascent followed by a subsequent reduction with varying azimuthal eigenmode numbers. In this paper, the behaviour of intensity profile in vortex cosine-hyperbolic Gaussian laser beam is studied when it travels in a plasma medium. The study shows that the intensity is minimized as the centre of this ring-shaped intensity profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The data underlying the results presented in this manuscript may be obtained from the authors after making a reasonable request. The manuscript has associated data in a data repository.

References

  1. S. Pfalzner, An Introduction to Inertial Confinement Fusion (CRC Press, Boca Raton, 2006)

    Book  Google Scholar 

  2. R. Betti, O.A. Hurricane, Inertial-confinement fusion with lasers. Nat. Phys. 12(5), 435–448 (2016)

    Article  Google Scholar 

  3. D. Keefe, Inertial confinement fusion. Annu. Rev. Nucl. Part. Sci. 32(1), 391–441 (1982)

    Article  ADS  Google Scholar 

  4. P. Jha, G. Raj, A.K. Upadhyaya, Relativistic and ponderomotive effects on stimulated Raman scattering of intense laser radiation in plasma. IEEE Trans. Plasma Sci. 34(3), 922–926 (2006)

    Article  ADS  Google Scholar 

  5. R.L. McCrory, D.D. Meyerhofer, R. Betti, R.S. Craxton, J.A. Delettrez, D.H. Edgell, F.H. Séguin, Progress in direct-drive inertial confinement fusion. Phys. Plasmas 15(5), 055503 (2008)

    Article  ADS  Google Scholar 

  6. S.E. Bodner, D.G. Colombant, J.H. Gardner, R.H. Lehmberg, S.P. Obenschain, L. Phillips et al., Direct-drive laser fusion: status and prospects. Phys. Plasmas 5(5), 1901–1918 (1998)

    Article  ADS  Google Scholar 

  7. R.K. Kirkwood, J.D. Moody, J. Kline, E. Dewald, S. Glenzer, L. Divol, J. Lindl, A review of laser-plasma interaction physics of indirect-drive fusion. Plasma Phys. Control. Fusion 55(10), 103001 (2013)

    Article  ADS  Google Scholar 

  8. N. Gupta, A. AK, R. Johari, S. Kumar, S.B. Bhardwaj, A. Saini, Stimulated Raman scattering of self-focused Laguerre–Gaussian laser beams in axially inhomogeneous plasma. J. Opt., 1–9 (2023)

  9. M. Hohenberger, P.B. Radha, J.F. Myatt, S. LePape, J.A. Marozas, F.J. Marshall et al., Polar-direct-drive experiments on the National Ignition Facility. Phys. Plasmas 22(5), 056308 (2015)

    Article  ADS  Google Scholar 

  10. N.M. Hoffman, Hydrodynamic instabilities in inertial confinement fusion. Laser Plasma Interact. 5, 105–138 (2019)

    Article  Google Scholar 

  11. Y. Zhao, S. Weng, M. Chen, J. Zheng, H. Zhuo, C. Ren, Z. Sheng, J. Zhang, Effective suppression of parametric instabilities with decoupled broadband lasers in plasma. Phys. Plasmas 24(11), 112102 (2017)

    Article  ADS  Google Scholar 

  12. O. Klimo, V.T. Tikhonchuk, Laser-plasma interaction studies in the context of shock ignition: the regime dominated by parametric instabilities. Plasma Phys. Control. Fusion 55(9), 095002 (2013)

    Article  ADS  Google Scholar 

  13. R.P. Sharma, M.K. Gupta, Effect of relativistic and ponderomotive nonlinearities on stimulated Raman scattering in laser plasma interaction. Phys. Plasmas 13(11), 113109 (2006)

    Article  ADS  Google Scholar 

  14. P.K. Tiwari, V.K. Tripathi, Stimulated Raman scattering of a laser in a plasma with clusters. Phys. Plasmas 11(4), 1674–1679 (2004)

    Article  ADS  Google Scholar 

  15. K. Kawasaki, G. Cristoforetti, T. Idesaka, Y. Hironaka, D. Tanaka, D. Batani, K. Shigemori, Effects of hydrogen concentration in ablator material on stimulated Raman scattering, two-plasmon decay, and hot electrons for direct-drive inertial confinement fusion. Phys. Rev. Res. 5(3), 033051 (2023)

    Article  Google Scholar 

  16. J.W. Bates, R.K. Follett, J.G. Shaw, S.P. Obenschain, J.F. Myatt, J.L. Weaver, M.F. Wolford, D.M. Kehne, M.C. Myers, T.J. Kessler, Suppressing parametric instabilities in direct-drive inertial-confinement-fusion plasmas using broadband laser light. Phys. Plasmas 30(5), 052703 (2023)

    Article  Google Scholar 

  17. M.J. Rosenberg, A.A. Solodov, J.F. Myatt, W. Seka, P. Michel, M. Hohenberger, J.W. Bates, Origins and scaling of hot-electron preheat in ignition-scale directdrive inertial confinement fusion experiments. Phys. Rev. Lett. 120(5), 055001 (2018)

    Article  ADS  Google Scholar 

  18. E.L. Aisa, X. Ribeyre, G. Duchateau, T. Nguyen-Bui, V.T. Tikhonchuk, A. Colaïtis, R. Betti, A. Bose, W. Theobald, The role of hot electrons in the dynamics of a laser-driven strong converging shock. Phys. Plasmas 24(11), 112711 (2017)

    Article  ADS  Google Scholar 

  19. G. Cristoforetti, P. Koester, S. Atzeni, D. Batani, S. Fujioka, Y. Hironaka, L.A. Gizzi, Multibeam laser–plasma interaction at the Gekko XII laser facility in conditions relevant for direct-drive inertial confinement fusion. High Power Laser Sci. Eng. 11, e24 (2023)

    Article  Google Scholar 

  20. B.A. Ebrahimipour, A. Ganjovi, M. Taraz, M. Zamani, H. Noori, On the effect of stimulated Raman scattering on THz radiation in the laser plasma interactions. Chin. J. Phys. 77, 2561–2575 (2022)

    Article  Google Scholar 

  21. Y. Ji, C.W. Lian, R. Yan, C. Ren, D. Yang, Z.H. Wan, B. Zhao, C. Wang, Z.H. Fang, J. Zheng, Convective amplification of stimulated Raman rescattering in a picosecond laser plasma interaction regime. Matter Radiat. Extrem. 6(1), 015901 (2021)

    Article  Google Scholar 

  22. S. Depierreux, C. Labaune, J. Fuchs, D. Pesme, V.T. Tikhonchuk, H.A. Baldis, Langmuir decay instability cascade in laser-plasma experiments. Phys. Rev. Lett. 89(4), 045001 (2002)

    Article  ADS  Google Scholar 

  23. R.S. Craxton, K.S. Anderson, T.R. Boehly, V.N. Goncharov, D.R. Harding, J.P. Knauer et al., Direct-drive inertial confinement fusion: a review. Phys. Plasmas 22(11), 110501 (2015)

    Article  ADS  Google Scholar 

  24. D.S. Montgomery, J.A. Cobble, J.C. Fernandez, R.J. Focia, R.P. Johnson, N. Renard- LeGalloudec, D.A. Russell, Recent Trident single hot spot experiments: evidence for kinetic effects and observation of Langmuir decay instability cascade. Phys. Plasmas 9(5), 2311–2320 (2002)

    Article  ADS  Google Scholar 

  25. B. Afeyan, C. Geddes, D. Montgomer, B.R.K. Kirkwood, P. Bellomo, K. Estabrook, A.J. Schmitt, Optical mixing controlled stimulated scattering instabilities: progress toward the control of stimulated Raman and Brillouin scattering levels with overlapping laser beams in ICF targets, in International Conference on Inertial Fusion Sciences and Applications, pp. 331–336 (2000)

  26. H.A. Baldis, C. Labaune, Interplay between parametric instabilities in the context of inertial confinement fusion. Plasma Phys. Control. Fusion 39(5A), A51 (1997)

    Article  ADS  Google Scholar 

  27. M. Yaalou, Z. Hricha, A. Belafhal, Transformation of a vortex cosine-hyperbolic-Gaussian beam by an airy transform optical system. Opt. Quantum Electron. 55(10), 875 (2023)

    Article  Google Scholar 

  28. A.A.A. Ebrahim, M.A. Swillam, A. Belafhal, Atmospheric turbulent effects on the propagation properties of a general model vortex higher-order cosh-Gaussian beam. Opt. Quantum Electron. 55(4), 316 (2023)

    Article  Google Scholar 

  29. P. Kad, A. Singh, Excitation of an upper hybrid wave by Laguerre–Gaussian pulse in plasma with a density ramp and electron acceleration. Phys. Plasmas 30(10), 103105 (2023)

    Article  ADS  Google Scholar 

  30. P. Kad, A. Singh, Electron acceleration and spatio-temporal variation of Laguerre–Gaussian laser pulse in relativistic plasma. Eur. Phys. J. Plus 137(8), 885 (2022)

    Article  Google Scholar 

  31. A. Singh, K. Walia, Self-focusing of Gaussian laser beam in collisionless plasma and its effect on stimulated Brillouin scattering process. Opt. Commun. 290, 175–182 (2013)

    Article  ADS  Google Scholar 

  32. A. Singh, K. Walia, Enhanced Raman scattering of elliptical laser beam in a collisionless plasma. J. Fusion Energy 31, 21–29 (2012)

    Article  ADS  Google Scholar 

  33. O. Kamboj, D.N. Gupta, N. Kant, Effect of chirp on stimulated-forward Raman scattering in a magnetised plasma with rippled density for fusion applications. Physica Scripta 98(7), 075606 (2023)

    Article  ADS  Google Scholar 

  34. O. Kamboj, D.N. Gupta, N. Kant, Stimulated Raman scattering coupled with decay instability in a magnetized plasma with hot drifting electrons. Mod. Phys. Lett. B 37, 2350137 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  35. V.T. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S. Hüller, J. Myatt, H.A. Baldis, Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments. Phys. Plasmas 8(5), 1636–1649 (2001)

    Article  ADS  Google Scholar 

  36. D.N. Gupta, P. Yadav, D.G. Jang, M.S. Hur, H. Suk, K. Avinash, Onset of stimulated Raman scattering of a laser in a plasma in the presence of hot drifting electrons. Phys. Plasmas 22(5), 052101 (2015)

    Article  ADS  Google Scholar 

  37. C.S. Liu, V.K. Tripathi, Interaction of Electromagnetic Waves with Electron Beams and Plasmas (World Scientific, Singapore, 1994)

    Book  Google Scholar 

Download references

Funding

No funding source is available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niti Kant.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Ethical approval

This declaration is not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamboj, O., Azad, T., Zare, S. et al. Dynamics of vortex beams on stimulated Raman scattering in plasma. Eur. Phys. J. Plus 139, 301 (2024). https://doi.org/10.1140/epjp/s13360-024-05095-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05095-1

Navigation