Skip to main content
Log in

Violation of the third law of thermodynamics by black holes, Riemann zeta function and Bose gas in negative dimensions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Black holes violate the third law of thermodynamics in its standard formulation. Schwarzschild black hole entropy is inverse proportional to the square of the temperature \(S=1/(16 \pi T^2)\) and tends to infinity rather than zero when the temperature goes to zero. We search for quantum statistical models with such exotic thermodynamic behaviour. It is shown that the Schwarzschild black hole in \(D=4\) spacetime dimensions corresponds to a Bose gas in a space with \(d=-4\) negative spatial dimensions. The Riemann zeta function is used to define the entropy of the Bose gas in negative dimension. The correspondence between black holes in higher dimensions and de Sitter space with Bose gas is considered. In particular case of \(D=5\), the corresponding Bose gas model lives in a space with \(d=3\) spatial dimensions and contains a nonlocal kinetic term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

Notes

  1. In particular, for the Reissner–Nordstrom case the entropy at the extremal regime is equal to \(S=\pi Q^2\), i.e. it dependents on parameter of the black hole. Note that one can get the zero entropy for the extremal configuration of the Reissner–Nordstrom black hole properly using an integration constant and get zero entropy for the extremal case.

References

  1. B. Bardeen, B. Carter, S.W. Hawking, The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975) [Erratum: Commun. Math. Phys. 46, 206 (1976)]

  4. V. Frolov, I. Novikov, Black Hole Physics: Basic Concepts and New Developments, vol. 96 (Springer, New York, 2012)

    Google Scholar 

  5. R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984)

    Book  Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, Statistical Physics, vol. 5 (Elsevier, New York, 2013)

    Google Scholar 

  7. W. Israel, Third law of black-hole dynamics. A formulation and proof. Phys. Rev. Lett. 57, 397 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Wald, Nernst theorem and black hole thermodynamics. Phys. Rev. D 56, 6467 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Racz, Does the third law of black hole thermodynamics really have a serious failure? Class. Quantum Grav. 17(20), 4353 (2000)

    Article  ADS  Google Scholar 

  10. F. Belgiorno, M. Martellini, Black holes and the third law of thermodynamics. Int. J. Mod. Phys. D 13, 739–770 (2004). arXiv:gr-qc/0210026 [gr-qc]

  11. W.F. Wreszinski, E. Abdalla, A precise formulation of the third law of thermodynamics with applications to statistical physics and black holes. arXiv:0710.4918 [math-ph]

  12. C. Kehle, R. Unger, Gravitational collapse to extremal black holes and the third law of black hole thermodynamics. arXiv:2211.15742 [gr-qc]

  13. A.A. Karatsuba, S.M. Voronin, The Riemann Zeta-Function (de Gruyter, Berlin, 1992)

    Book  Google Scholar 

  14. A. Strominger, C. Vafa, Microscopic origin of the Bekenstein–Hawking entropy. Phys. Lett. B 379, 99–104 (1996). arXiv:hep-th/9601029

  15. G.T. Hooft, On the quantum structure of a black hole. Nucl. Phys. B 256, 727–745 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  16. J. Chakravarty, Overcounting of interior excitations: a resolution to the bags of gold paradox in AdS. JHEP 02, 027 (2021). arXiv:2010.03575 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  17. V. Balasubramanian, A. Lawrence, J.M. Magan, M. Sasieta, Microscopic origin of the entropy of black holes in general relativity. arXiv:2212.02447 [hep-th]

  18. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini, The entropy of Hawking radiation. Rev. Mod. Phys. 93(3), 035002 (2021). arXiv:2006.06872 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Wheeler, Relativity, Groups and Topology, edited by B. S. DeWitt and C. M. DeWitt. Gordon and Breach, New York (1964)

  20. J. Maldacena, A simple quantum system that describes a black hole. arXiv:2303.11534 [hep-th]

  21. V.A. Zagrebnov, J.-B. Bru, The Bogoliubov model of weakly imperfect Bose gas. Phys. Rep. 350(5–6), 291–434 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  22. I.V. Volovich, D-Branes, Black Holes and SU (\(\infty\)) gauge theory, pp. 41–48. arXiv preprint arXiv:hep-th/9608137 (1996)

  23. I.V. Volovich, From p-adic strings to étale strings. Proc. Steklov Inst. Math. 203, 37–42 (1995)

    Google Scholar 

  24. S. Gukov, E. Witten, Gauge theory, ramification, and the geometric langlands program. Commun. Number Theory Phys. 1, 1–236 (2007). arXiv:hep-th/0612073

  25. I.Y. Aref’eva, I.V. Volovich, Quantization of the Riemann zeta function and cosmology. Int. J. Geom. Methods Mod. Phys. 4, 881–895 (2007). arXiv:hep-th/0701284 [hep-th]

    Article  MathSciNet  Google Scholar 

  26. B. Dragovich, Zeta strings. arXiv:hep-th/0703008 [hep-th]

  27. Y. Manin, The notion of dimension in geometry and algebra. Bull. Am. Math. Soc. 43(2), 139–161 (2006)

    Article  MathSciNet  Google Scholar 

  28. V.P. Maslov, Negative dimension in general and asymptotic topology. arXiv:math/0612543 (2006)

  29. C. Anastasiou, E.W.N. Glover, C. Oleari, Scalar one loop integrals using the negative dimension approach. Nucl. Phys. B 572, 307–360 (2000). arXiv:hep-ph/9907494 [hep-ph]

    Article  ADS  Google Scholar 

  30. M. Veltman, Regularization and Renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Ageev, V. Berezin, V. Frolov, M. Khramtsov, K. Rannu, P. Slepov, A. Teretenkov, A. Trushechkin and V. Zagrebnov for fruitful discussions. This work is supported by the Russian Science Foundation (project19-11-00320, V.A. Steklov Mathematical Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Aref’eva.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I., Volovich, I. Violation of the third law of thermodynamics by black holes, Riemann zeta function and Bose gas in negative dimensions. Eur. Phys. J. Plus 139, 300 (2024). https://doi.org/10.1140/epjp/s13360-024-05049-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05049-7

Navigation