Skip to main content
Log in

Enhanced smoke/toxicity suppression of intumescent flame retardant thermoplastic polyurethane composites with the addition of graphene

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

High flame retardancy with significant suppression of toxic smoke and melt-dripping are challenging issues associated with flame-retardant thermoplastic polyurethane (TPU). To address these issues, in this work, graphene (Gr) was used as an effective two-dimensional smoke-toxicity suppressant with loadings less than 1 wt%, in combination with two efficient intumescent flame retardant (IFR) systems reported in our previous works. The IFRs were consisted of ammonium polyphosphate, pentaerythritol (PER), and melamine polyphosphate (MPP) with MPP:PER ratios of 10:1 (IFR1) and 1:1 (IFR2). Cone calorimeter test (CCT) results showed outstanding flame retardancy and excellent toxic smoke suppression in TPU/IFR1/0.75%Gr sample with reduced peak heat release rate (PHRR) by 85.3%, peak smoke production rate (PSPR) by 92.1%, and peak carbon monoxide production (PCOP) by 91.3% compared with neat TPU. TPU/IFR2/0.5%Gr sample exhibited a similar trend, with the PHRR, PSPR, and PCOP reduced by 66.8%, 62.5%, and 64.0%, respectively, with good anti-dripping property. The barrier function of graphene had a significant influence on reducing total smoke released in TPU/IFR1/0.75%Gr and TPU/IFR2/0.5%Gr samples by 82.1% and 34.3%, respectively, compared with their related TPU/IFRs composites. TPU nanocomposites reached a UL-94 V-0 rating and LOI of more than 29%. TGA results indicated improved char-forming, and FESEM depicted the graphitized integrated char structures. Mechanical performance of TPU/IFR2/0.5%Gr exhibited an enhanced ductility compared with the neat TPU. The possible flame retardancy mechanism was proposed based on the data obtained from the CCT, TGA, and EDS elemental analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

APP:

Ammonium polyphosphate

CCT:

Cone calorimeter test

EDS:

Energy-dispersive X-ray analysis

FESEM:

Field emission scanning electron microscope

FPI:

Fire performance index

FGI:

Fire growth index

Gr:

Graphene

IFR:

Intumescent flame retardant

LOI:

Limiting oxygen index

MPP:

Melamin polyphosphate

PCOP:

Peak carbon monoxide production

PER:

Pentaerytritol

PHRR:

Peak heat release rate

PSPR:

Peak smoke production rate

SF:

Smoke factor

TGA:

Thermal gravimetric analysis

THR:

Total heat release

TPU:

Thermoplastic polyurethane

TSR:

Total smoke release

TTI:

Time to ignition

References

  1. Guler T, Tayfun U, Bayramli E, Dogan M (2017) Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Thermochim Acta 647:70–80

    Article  CAS  Google Scholar 

  2. Petrović ZS, Ferguson J (1991) Polyurethane elastomers. Prog Polym Sci 16:695–836

    Article  Google Scholar 

  3. Shi Y, Yu B, Zhou K, Yuen RK, Gui Z, Hu Y, Jiang S (2015) Novel CuCo2O4/graphitic carbon nitride nanohybrids: highly effective catalysts for reducing CO generation and fire hazards of thermoplastic polyurethane nanocomposites. J Hazard Mater 293:87–96

    Article  CAS  PubMed  Google Scholar 

  4. Bourbigot S, Turf T, Bellayer S, Duquesne S (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab 94:1230–1237

    Article  CAS  Google Scholar 

  5. Zhou K, Gui Z, Hu Y, Jiang S, Tang G (2016) The influence of cobalt oxide graphene hybrids on thermal degradation, fire hazards and mechanical properties of thermoplastic polyurethane composites. Compos Part A Appl Sci Manuf 88:10–18

    Article  CAS  Google Scholar 

  6. Wan L, Deng C, Chen H, Zhao Z-Y, Huang S-C, Wei W-C, Yang A-H, Zhao H-B, Wang Y-Z (2021) Flame-retarded thermoplastic polyurethane elastomer: from organic materials to nanocomposites and new prospects. Chem Eng J 417:129314

    Article  CAS  Google Scholar 

  7. Xu W-Z, Wang S-Q, Liu L, Hu Y (2016) Synthesis of heptamolybdate-intercalated MgAl LDHs and its application in polyurethane elastomer. Polym Adv Technol 27:250–257

    Article  CAS  Google Scholar 

  8. Zhao KM, Xu WZ, Song L, Wang BB, Feng H, Hu Y (2012) Synergistic effects between boron phosphate and microencapsulated ammonium polyphosphate in flame-retardant thermoplastic polyurethane composites. Polym Adv Technol 23:894–900

    Article  CAS  Google Scholar 

  9. Shi Y, Fu L, Chen X, Guo J, Yang F, Wang J, Zheng Y, Hu Y (2017) Hypophosphite/graphitic carbon nitride hybrids: preparation and flame-retardant application in thermoplastic polyurethane. Nanomaterials 7:259

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin M, Li B, Li QF, Li S, Zhang S (2011) Synergistic effect of metal oxides on the flame retardancy and thermal degradation of novel intumescent flame-retardant thermoplastic polyurethanes. J Appl Polym Sci 121:1951–1960

    Article  CAS  Google Scholar 

  11. Chen X, Jiang Y, Jiao C (2014) Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 117:857–866

    Article  CAS  Google Scholar 

  12. Liu L, Xu Y, Li S, Xu M, He Y, Shi Z, Li B (2019) A novel strategy for simultaneously improving the fire safety, water resistance and compatibility of thermoplastic polyurethane composites through the construction of biomimetic hydrophobic structure of intumescent flame retardant synergistic system. Compos Part B Eng 176:107218

    Article  CAS  Google Scholar 

  13. Chen XL, Jiang YF, Jiao CM (2014) Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater 266:114–121

    Article  CAS  PubMed  Google Scholar 

  14. Liu L, Zhao X, Ma C, Chen X, Li S, Jiao Ch (2016) Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim 126:1821–1830

    Article  CAS  Google Scholar 

  15. Cai W, Wang J, Pan Y, Guo W, Mu X, Feng X, Yuan B, Wang X, Hu Y (2018) Mussel-inspired functionalization of electrochemically exfoliated graphene: based on self-polymerization of dopamine and its suppression effect on the fire hazards and smoke toxicity of thermoplastic polyurethane. J Hazard Mater 352:57–69

    Article  CAS  PubMed  Google Scholar 

  16. Saha C, Bahera PK, Raut SK, Singha NK (2021) A thermoplastic polyurethane/nanosilica composite via melt mixing process and its properties. SILICON 13:1041–1049

    Article  CAS  Google Scholar 

  17. Zhang X, Shen Q, Zhang X, Pan H, Lu Y (2016) Graphene oxide-filled multilayer coating to improve flame-retardant and smoke suppression properties of flexible polyurethane foam. J Mater Sci 51:10361–10374

    Article  CAS  Google Scholar 

  18. Torres-Castillo CS, Fuentes-Agustín JE, García-Reyes EM, Zamudio-Aguilar MAM, Morales-Zamudio L, Lozano T, Navarro-Pardo F, Sanchez-Valdez S, Martinez-Colunga G, Karami S, Lafleur P (2023) Effect of non-functionalized and functionalized graphene oxide with a silane agent on the thermal and rheological properties of nylon 6,6. Iran Polym J 32:139–149

    Article  CAS  Google Scholar 

  19. Huang Z, Li F, Liu C, Yang M, Pan B, Rao W, Lei Y, Yu C (2023) Bifunctional modification of graphene by phosphorus/nitrogen-containing silane compounds for smoke suppression and flame retardancy of epoxy resins. J Appl Polym Sci 140:e54285

    Article  CAS  Google Scholar 

  20. Goda ES, Abu Elella MH, Gamal H, Hong SE, Yoon KR (2021) Materials and chemistry of flame-retardant polyurethanes. In: Gupta RK (ed) A fundamental approach, vol 1. American Chemical Society, Washington

    Google Scholar 

  21. Zhou K, Gui Z, Hu Y (2016) The influence of graphene-based smoke suppression agents on reduced fire hazards of polystyrene composites. Compos Part A Appl Sci Manuf 80:217–227

    Article  CAS  Google Scholar 

  22. Govindaraj P, Sokolova A, Salim N, Juodkazis S, Fuss FK, Fox B, Hameed N (2021) Distribution states of graphene in polymer nanocomposites: a review. Compos Part B Eng 226:109353

    Article  CAS  Google Scholar 

  23. Ming G, Li J, Zhang X, Yue L, Chai Z (2018) The flame retardancy of epoxy resin including the modified graphene oxide and ammonium polyphosphate. Combust Sci Technol 190:1126–1140

    Article  CAS  Google Scholar 

  24. Bhandari S, Gupta P (2022) Polymer-graphene composites as flame and fire retardant material. In: Rahaman M, Nayak L, Hussein IA, Das NC (eds) Polymer nanocomposites containing graphene. Woodhead Publishing, Cambridge

    Google Scholar 

  25. Huang GB, Wang SQ, Song PA, Wu CL, Chen SQ, Wang X (2014) Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites. Compos Part A Appl Sci Manuf 59:18–25

    Article  CAS  Google Scholar 

  26. Chen X, Ma C, Jiao C (2016) Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim 126:633–642

    Article  CAS  Google Scholar 

  27. Chen X, Ma C, Jiao C (2016) Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polym Degrad Stab 129:275–285

    Article  CAS  Google Scholar 

  28. Chen XL, Ma CY, Jiao CM (2016) Synergistic effects between iron–grapheme and melamine salt of pentaerythritol phosphate on flame retardant thermoplastic polyurethane. Polym Adv Technol 27:1508–1516

    Article  CAS  Google Scholar 

  29. Xu W, Cheng C, Qin Z, Zhong D, Cheng Z, Zhang Q (2021) Improvement of thermoplastic polyurethane’s flame retardancy and thermal conductivity by leaf-shaped cobalt-zeolitic imidazolate framework–modified graphene and intumescent flame retardant. Polym Adv Technol 32:228–240

    Article  CAS  Google Scholar 

  30. Yuan B, Fan A, Yang M, Chen X, Hu Y, Bao C, Jiang S, Niu Y, Zhang Y, He S, Dai H (2017) The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stab 143:42–56

    Article  CAS  Google Scholar 

  31. Taghi-Akbari L, Naimi-Jamal MR, Ahmadi S (2023) Flammability, smoke production, and mechanical properties of thermoplastic polyurethane composites with an intumescent flame-retardant system and nano-silica. Iran Polym J 32:1165–1178

    Article  CAS  Google Scholar 

  32. Taghi-Akbari L, Naimi-Jamal MR, Ahmadi S (2023) Fire performance of intumescent flame retardant/nanosilica/thermoplastic polyurethane composite: a study on synergism. Iran J Polym Sci Technol (in Persian) 36:73–86

    Google Scholar 

  33. Yuan Y, Yang H, Yu B, Shi Y, Wang W, Song L, Hu Y, Zhang Y (2016) Phosphorus and nitrogen-containing polyols: synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind Eng Chem Res 55:10813–10822

    Article  CAS  Google Scholar 

  34. Lu S, Hong W, Chen X (2019) Nanoreinforcements of two-dimensional nanomaterials for flame retardant polymeric composites: an overview. Adv Polym Technol 2019:4273253

    Article  Google Scholar 

  35. Gou JH, Tang Y (2010) In: Leng J, Lau AKT (eds.) Multifunctional polymer nanocomposites, 1st Edn. CRC Press, Boca Raton, FL

  36. Hesami M, Bagheri R, Masoomi M (2014) Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites. Iran Polym J 23:469–476

    Article  CAS  Google Scholar 

  37. Sanned E, Mensah RA, Försth M, Das O (2023) The curious case of the second/end peak in the heat release rate of wood: a cone calorimeter investigation. Fire Mater 47:498–513

    Article  CAS  Google Scholar 

  38. Duquesne S, Le BM, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T, Vezin H (2001) Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J Appl Polym Sci 82:3262–3274

    Article  CAS  Google Scholar 

  39. Li H-L, Huo C, Miao P, Zhang T, Wei H-L (2017) Phenolic foam based the influence of intumescent flame retardancy system ammonium polyphosphate/pentaerythritol/melamine. Proc 2017 Int Conf Manuf Eng Intelligent Mater (ICMEIM 2017), Atlantis Press

  40. Liu X, Guo J, Tang W, Li H, Gu X, Sun J, Zhang S (2019) Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Part A Appl Sci Manuf 119:291–298

    Article  CAS  Google Scholar 

  41. Almeras X, Le Bras M, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F (2003) Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stab 82:325–331

    Article  CAS  Google Scholar 

  42. Jiao C, Chen X (2010) Flammability and thermal degradation of intumescent flame-retardant polypropylene composites. Polym Eng Sci 50:767–772

    Article  CAS  Google Scholar 

  43. Weil ED (2000) Synergists, adjuvants and antagonists in flame-retardant systems. In: Grand AF, Wilkie CA (eds) Fire retardancy of polymeric materials. CRC Press, pp 115–145

  44. Cai W, Feng X, Hu W, Pan Y, Hu Y, Gong X (2016) Functionalized graphene from electrochemical exfoliation for thermoplastic polyurethane: thermal stability, mechanical properties, and flame retardancy. Ind Eng Chem Res 55:10681–10689

    Article  CAS  Google Scholar 

  45. Chen X, Jiang Y, Liu J, Jiao C, Qian Y, Li S (2015) Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim 120:1493–1501

    Article  CAS  Google Scholar 

  46. Liu D-Y, Zhao B, Wang J-S, Liu P-W, Liu Y-Q (2018) Flame retardation and thermal stability of novel phosphoramide/expandable graphite in rigid polyurethane foam. J Appl Polym Sci 135:46434

    Article  Google Scholar 

  47. Zhu Y, Cai W, Zhao Y, Mu X, Zhou X, Chu F, Wang B, Hu Y (2022) Graphite-like carbon nitride/poly phosphoramide nanohybrids for enhancement on thermal stability and flame retardancy of thermoplastic polyurethane elastomers. ACS Appl Polym Mater 4:121–128

    Article  CAS  Google Scholar 

  48. Wang Z, Jiang Y, Yang X, Zhao J, Fu W, Wang N, Wang D-Y (2022) Surface modification of ammonium polyphosphate for enhancing flame-retardant properties of thermoplastic polyurethane. Materials 15:1990

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M (2012) Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater 36:203–215

    Article  CAS  Google Scholar 

  50. Hu W, Yu B, Jiang S-D, Song L, Hu Y, Wang B (2015) Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J Hazard Mater 300:58–66

    Article  CAS  PubMed  Google Scholar 

  51. Zhang J-Y, Zhao H-B, Zhang A-N, Cheng J-B, Li S-L, Zhao W, Fu T, Zhao Z-Y, Wang Y-Z (2022) Flame-retardant nanocoating towards high-efficiency suppression of smoke and toxic gases for polymer foam. Compos Part A Appl Sci Manuf 159:107021

    Article  CAS  Google Scholar 

  52. Song Y, Xue B, Wang J, Qin R, Niu M (2020) Ammonium polyphosphate wrapped carbon microspheres: a novel flame retardant with smoke suppression for poly(ethylene terephthalate). J Polym Res 27:2

    Article  CAS  Google Scholar 

  53. Wang J, Zhang D, Zhang Y, Cai W, Yao C, Hu Y, Hu W (2019) Construction of multifunctional boron nitride nanosheet towards reducing toxic volatiles (CO and HCN) generation and fire hazard of thermoplastic polyurethane. J Hazard Mater 362:482–494

    Article  CAS  PubMed  Google Scholar 

  54. Wang Y, Zhao J (2020) Benign design of intumescent flame retardant coating incorporated various carbon sources. Constr Build Mater 236:117433

    Article  CAS  Google Scholar 

  55. Wu X, Li Z, Joao G, Zhang Y, Huang S, Liu Q (2020) Reducing the flammability of hydrophobic silica aerogels by tailored heat treatment. J Nanopart Res 22:83

    Article  CAS  Google Scholar 

  56. Tabuani D, Bellucci F, Terenzi A, Camino G (2012) Flame retarded Thermoplastic Polyurethane (TPU) for cable jacketing application. Polym Degrad Stab 97:2594–2601

    Article  CAS  Google Scholar 

  57. Chen X, Jiao C, Zhang J (2011) Microencapsulation of ammonium polyphosphate with hydroxyl silicone oil and its flame retardance in thermoplastic polyurethane. J Therm Anal Calorim 104:1037–1043

    Article  CAS  Google Scholar 

  58. Ljubic D, Srinivasan M, Szoszkiewicz R, Javni I, Petrović ZS (2015) Surface modified graphene/single-phase polyurethane elastomers with improved thermo-mechanical and dielectric properties. Eur Polym J 70:55–65

    Article  CAS  Google Scholar 

  59. Shi X-H, Wu S-J, Xie W-M, Liu Q-Y, Yang S-Y, Hobson J, Wang D-Y (2023) Cupric ion decorated ammonium polyphosphate as an effective flame retardant for thermoplastic polyurethane. J Mater Sci 58:9060–9072

    Article  CAS  Google Scholar 

  60. Cai W, Li Z, Mu X, He L, Zhou X, Guo W, Song L, Hu Y (2021) Barrier function of graphene for suppressing the smoke toxicity of polymer/black phosphorous nanocomposites with mechanism change. J Hazard Mater 404:124106

    Article  CAS  PubMed  Google Scholar 

  61. Huang W, Huang J, Yu B, Meng Y, Cao X, Zhang Q, Wu W, Shi D, Jiang T, Li RKY (2021) Facile preparation of phosphorus containing hyperbranched polysiloxane grafted graphene oxide hybrid toward simultaneously enhanced flame retardancy and smoke suppression of thermoplastic polyurethane nanocomposites. Compos Part A Appl Sci Manuf 150:106614

    Article  CAS  Google Scholar 

  62. Cao X, Zhao W, Huang J, He Y, Liang X, Su Y, Wu W, Li RKY (2021) Interface engineering of graphene oxide containing phosphorus/nitrogen towards fire safety enhancement for thermoplastic polyurethane. Compos Commun 27:100821

    Article  Google Scholar 

  63. Zhang J, Wang H, Sun W, Zhang Z, Li H, Sun S, Sun J, Gu X (2021) Surface modification on ammonium polyphosphate and its enhanced flame retardancy in thermoplastic polyurethane. Polym Adv Technol 32:2879–2886

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the use of the facilities and technical assistance of the staffs of the Fire Engineering Department of Road, Housing & Urban Development Research Center (BHRC), Iran. We also wish to thank the use of the facilities and technical assistance of the staffs of the Department of Plastic of Iran Polymer and Petrochemical Institute (IPPI), Iran. We also acknowledge Iran University of Science and Technology (IUST) for partial support for the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Naimi-Jamal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghi-Akbari, L., Naimi-Jamal, M.R., Ahmadi, S. et al. Enhanced smoke/toxicity suppression of intumescent flame retardant thermoplastic polyurethane composites with the addition of graphene. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01303-y

Keywords

Navigation