Skip to main content
Log in

Bogoyavlensky–modified KdV hierarchy and toroidal Lie algebra \(\textrm{sl}^\textrm{tor}_{2}\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

By principal representation of toroidal Lie algebra \(\mathrm{sl^{tor}_2}\), we construct an integrable system: Bogoyavlensky–modified KdV (B–mKdV) hierarchy, which is \((2+1)\)-dimensional generalization of modified KdV hierarchy. Firstly, bilinear equations of B–mKdV hierarchy are obtained by fermionic representation of \(\mathrm{sl^{tor}_2}\) and boson–fermion correspondence, which are rewritten into Hirota bilinear forms. Also Fay-like identities of B–mKdV hierarchy are derived. Then from B–mKdV bilinear equations, we investigate Lax structure, which is another equivalent formulation of B–mKdV hierarchy. Conversely, we also derive B–mKdV bilinear equations from Lax structure. Other equivalent formulations of wave functions and dressing operator are needed when discussing bilinear equations and Lax structure. After that, Miura links between Bogoyavlensky–KdV hierarchy and B–mKdV hierarchy are discussed. Finally, we construct soliton solutions of B–mKdV hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Date sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  2. Bakalov, B., Kirk, S.: Representations of twisted toroidal Lie algebras from twisted modules over vertex algebras. J. Math. Phys. 62, 031703 (2021)

    ADS  MathSciNet  Google Scholar 

  3. Billig, Y.: An extension of the Korteweg–de Vries hierarchy arising from a representation of a toroidal Lie algebra. J. Algebra 217, 40–64 (1999)

    MathSciNet  Google Scholar 

  4. Bogoyavlensky, O.I.: Breaking solitons in \(2+1\)-dimensional integrable equations. Russ. Math. Surv. 4, 1–86 (1990)

    Google Scholar 

  5. Casati, P., Ortenzi, G.: New integrable hierarchies from vertex operator representations of polynomial Lie algebras. J. Geom. Phys. 56, 418–449 (2006)

    ADS  MathSciNet  Google Scholar 

  6. Carlet, G., Dubrovin, B., Zhang, Y.J.: The extended Toda hierarchy. Mosc. Math. J. 4, 313–332 (2004)

    MathSciNet  Google Scholar 

  7. Chen, H.Z., Cheng, J.P., Wu, Z.W.: Miura and Darboux transformations in the SUSY KP hierarchies. Nucl. Phys. B. 978, 115748 (2022)

    MathSciNet  Google Scholar 

  8. Cheng, J.P., Li, M.H., Tian, K.L.: On the modified KP hierarchy: tau functions, squared eigenfunction symmetries and additional symmetries. J. Geom. Phys. 134, 19–37 (2018)

    ADS  MathSciNet  Google Scholar 

  9. Cheng, J.P., Milanov, T.: The extended \(D\)-Toda hierarchy. Sel. Math. 27, 24 (2021)

    MathSciNet  Google Scholar 

  10. Date, E., Kashiwara, M., Jimbo, M., Miwa, T.: Transformation Groups for Soliton Equations, Nonlinear Integrable Systems-Classical Theory and Quantum Theory (Kyoto 1981), pp. 39–119. World Sci. Publishing, Singapore (1983)

    Google Scholar 

  11. Dickey, L.A.: Soliton Equations and Hamiltonian Systems, 2nd edn. World Scientific, Singapore (2003)

    Google Scholar 

  12. Dubrovin, B., Zhang, Y.J.: Virasoro symmetries of the extended Toda hierarchy. Commun. Math. Phys. 250, 161–193 (2004)

    ADS  MathSciNet  Google Scholar 

  13. Faddeev, L.D., Takhtajan, L.A.: Hamiltonian Methods in the Theory Of Solitons. Springer, Berlin (2007)

    Google Scholar 

  14. Geng, L.M., Hu, J.X., Wu, C.Z.: On Lax equations of the two-component BKP hierarchy. Phys. D. 449, 133748 (2023)

    MathSciNet  Google Scholar 

  15. Harnad, J., Balogh, F.: Tau Functions and Their Applications. Cambridge University Press, Cambridge (2021)

    Google Scholar 

  16. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  17. Hollowood, T., Miramontes, J.L.: Tau-functions and generalized integrable hierarchies. Commun. Math. Phys. 157, 99–117 (1993)

    ADS  MathSciNet  Google Scholar 

  18. Ikeda, T., Takasaki, K.: Toroidal Lie algebras and Bogoyavlensky’s \((2+1)\)-dimensional equation. Int. Math. Res. Not. 7, 329–369 (2001)

    MathSciNet  Google Scholar 

  19. Iohara, K., Saito, Y., Wakimoto, M.: Hirota bilinear forms with 2-toroidal symmetry. Phys. Lett. A 254, 37–46 (1999)

    ADS  MathSciNet  Google Scholar 

  20. Jimbo, M., Miwa, T.: Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983)

    MathSciNet  Google Scholar 

  21. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  22. Kac, V.G., van de Leur, J.W.: The \(n\)-component KP hierarchy and representation theory. J. Math. Phys. 44, 3245–3293 (2003)

    ADS  MathSciNet  Google Scholar 

  23. Kac, V.G., van de Leur, J.W.: Multicomponent KP type hierarchies and their reductions, associated to conjugacy classes of Weyl groups of classical Lie algebras. arXiv:2304.05737

  24. Kac, V.G., van de Leur, J.W.: Polynomial tau-functions for the multicomponent KP hierarchy. Publ. Res. Inst. Math. Sci. 58, 1–19 (2022)

    MathSciNet  Google Scholar 

  25. Kac, V.G., Wakimoto, M.: Exceptional hierarchies of soliton equations. Theta functions-Bowdoin 1987, Part 1, 191–237, Amer. Math. Soc, Providence, RI (1989)

  26. Kakei, S., Ikeda, T., Takasaki, K.: Hierarchy of (2+1)-dimensional nonlinear Schrödinger equation, self-dual Yang-Mills equation, and toroidal Lie algebras. Ann. Henri Poincarè. 3, 817–845 (2002)

    ADS  MathSciNet  Google Scholar 

  27. Kakei, S., Ohta, Y.: A differential-difference system related to toroidal Lie algebra. J. Phys. A. 34, 10585–10592 (2001)

    ADS  MathSciNet  Google Scholar 

  28. Kupershmidt, B.A.: Canonical property of the Miura maps between the MKP and KP hierarchies, continuous and discrete. Commun. Math. Phys. 167, 351–371 (1995)

    ADS  MathSciNet  Google Scholar 

  29. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    Google Scholar 

  30. Milanov, T.E.: Hirota quadratic equations for the extended Toda hierarchy. Duke Math. J. 138, 161–178 (2007)

    MathSciNet  Google Scholar 

  31. Miura, M.: Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys. 9, 1202–1204 (1968)

    ADS  MathSciNet  Google Scholar 

  32. Moody, R.V., Eswara Rao, S., Yokonuma, T.: Toroidal Lie algebras and vertex representations. Geom. Dedic. 35, 283–307 (1990)

    MathSciNet  Google Scholar 

  33. Ogawa, Y.J.: On the \((2+1)\)-dimensional extension of 1-dimensional Toda lattice hierarchy. J. Nonlinear Math. Phys. 15, 48–65 (2008)

    ADS  MathSciNet  Google Scholar 

  34. Ohta, Y.: Discretization of toroidal soliton equations. J. Nonlinear Math. Phys. 10, 143–148 (2003)

    ADS  MathSciNet  Google Scholar 

  35. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1993)

    Google Scholar 

  36. Oevel, W., Strampp, W.: Constrained KP hierarchy and bi-Hamiltonian structures. Commun. Math. Phys. 157, 51–81 (1993)

    ADS  MathSciNet  Google Scholar 

  37. Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  38. Shaw, J.C., Tu, M.H.: Miura and auto-Bäcklund transformations for the cKP and cmKP hierarchies. J. Math. Phys. 38, 5756–5773 (1997)

    ADS  MathSciNet  Google Scholar 

  39. Shigyo, Y.: On addition formulae of KP, mKP and BKP hierarchies. SIGMA 9, 035 (2013)

    MathSciNet  Google Scholar 

  40. Takasaki, K.: Two extensions of \(1\)D Toda hierarchy. J. Phys. A 43, 434032 (2010)

    ADS  MathSciNet  Google Scholar 

  41. van Moerbeke, P.: Integrable Foundations of String Theory. Lectures on Integrable Systems, pp. 163–267. World Sci. Publ, River Edge (1994)

    Google Scholar 

  42. Willox, R., Hattori, M.: Discretisations of constrained KP hierarchies. J. Math. Sci. Univ. Tokyo 22, 613–661 (2015)

    MathSciNet  Google Scholar 

  43. Yang, Y., Cheng, J.P.: Bilinear equations in Darboux transformations by boson-fermion correspondence. Phys. D. 433, 133198 (2022)

    MathSciNet  Google Scholar 

  44. Zabrodin, A.V.: Kadomtsev–Petviashvili hierarchies of types B and C. Theoret. Math. Phys. 208, 15–38 (2021)

    MathSciNet  Google Scholar 

  45. Zhang, Y.S., Guo, L.J., He, J.S., Zhou, Z.X.: Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853–891 (2015)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundations of China (Nos. 12171472 and 12261072) and “ Qinglan Project" of Jiangsu Universities. We thank Professor Chao–Zhong Wu (SYSU, China) for long-term encouragements and supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jipeng Cheng.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Cheng, J. Bogoyavlensky–modified KdV hierarchy and toroidal Lie algebra \(\textrm{sl}^\textrm{tor}_{2}\). Lett Math Phys 114, 50 (2024). https://doi.org/10.1007/s11005-024-01798-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-024-01798-9

Keywords

Mathematics Subject Classification

Navigation