Skip to main content
Log in

Regularity results for 3D shear-thinning fluid flows in terms of the gradient of one velocity component

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we show that a weak solution to 3D shear-thinning flows becomes strong provided that the gradient of one component of velocity belongs to a certain Lebesgue space class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This article has no additional data or materials.

References

  1. Alghamdi, A.M., Gala, S., Ragusa, M.A., Yang, J.: Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in \(R^3\). Comput. Appl. Math. 39(3), 234 (2020)

    Google Scholar 

  2. Bae, H.O., Kang, K., Lee, J., Wolf, J.: Regularity for Ostwald-de Waele type shear thickening fluids. Nonlinear Differ. Equ. Appl. 22(1), 1–19 (2015)

    MathSciNet  Google Scholar 

  3. Baranovskii, E.S.: On flows of Bingham-type fluids with threshold slippage. Adv. Math. Phys. 2017, 7548328 (2017)

    MathSciNet  Google Scholar 

  4. Baranovskii, E.S.: Optimal boundary control of nonlinear-viscous fluid flows. Sb. Math. 211(4), 505–520 (2020)

    MathSciNet  Google Scholar 

  5. Baranovskii, E.S.: A novel 3D model for non-Newtonian fluid flows in a pipe network. Math. Methods Appl. Sci. 44(5), 3827–3839 (2021)

    MathSciNet  Google Scholar 

  6. Baranovskii, E.S.: Feedback optimal control problem for a network model of viscous fluid flows. Math. Notes 112(1), 26–39 (2022)

    MathSciNet  Google Scholar 

  7. Baranovskii, E.S., Artemov, M.A.: Existence of optimal control for a nonlinear-viscous fluid model. Int. J. Differ. Equ. 2016, 9428128 (2016)

    MathSciNet  Google Scholar 

  8. Berselli, L.C., Diening, L., Růžička, M.: Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12(1), 101–132 (2010)

    MathSciNet  Google Scholar 

  9. Berselli, L.C., Růžička, M.: Global regularity properties of steady shear thinning flows. J. Math. Anal. Appl. 450(2), 839–871 (2017)

    MathSciNet  Google Scholar 

  10. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamic of Polymer Liquids, second edition Wiley, New York (1987)

    Google Scholar 

  11. Cao, C., Titi, E.S.: Regularity criteria for the three dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57(6), 2643–2662 (2008)

    MathSciNet  Google Scholar 

  12. Carlson, J., Jaffe, A., Wiles, A.: The Millennium Prize Problems. Clay Mathematics Institute and American Mathematical Society, Cambridge (2006)

    Google Scholar 

  13. Chhabra, R.P., Richardson, J.F.: Non-Newtonian Flow and Applied Rheology, second edition Butterworth-Heinemann, Oxford (2008)

    Google Scholar 

  14. Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motion of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9(1), 1–46 (2010)

    MathSciNet  Google Scholar 

  15. Fang, D., Qian, C.: Regularity criterion for 3D Navier-Stokes equations in Besov spaces. Commun. Pure Appl. Anal. 13(2), 585–603 (2014)

    MathSciNet  Google Scholar 

  16. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Steady-State Problems, 2nd edn. Springer, New York (2011)

    Google Scholar 

  17. Guo, Z., Caggio, M., Skalak, Z.: Regularity criteria for the Navier-Stokes equations based on one component of velocity. Nonlinear Anal. Real World Appl. 35, 379–396 (2017)

    MathSciNet  Google Scholar 

  18. Lin, H., Li, S.: Regularity criterion for solutions to the three-dimensional Navier-Stokes equations in the turbulent channel. J. Math. Anal. Appl. 420, 1803–1813 (2014)

    MathSciNet  Google Scholar 

  19. Hieber, M., Robinson, J.C., Shibata, Y., Galdi, G.P., Shibata, Y.: Mathematical Analysis of the Navier-Stokes Equations. Lecture Notes in Mathematics, vol. 2254. Springer, Berlin (2020)

  20. Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations. Nonlinearity 19, 453–469 (2006)

    MathSciNet  Google Scholar 

  21. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Beach, New York (1969)

    Google Scholar 

  22. Lemarié-Rieusset, P.G.: The Navier-Stokes Problem in the 21st Century. Chapman and Hall/CRC, New York (2016)

    Google Scholar 

  23. Málek, J., Necas, J., Rokyta, M., Růžička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Chapman/Hall, London (1996)

    Google Scholar 

  24. Pak, J., Sin, C., Baranovskii, E.S.: Regularity criterion for 3D shear-thinning fluids via one component of velocity. Appl. Math. Optim. 88, 48 (2023)

    MathSciNet  Google Scholar 

  25. Pineau, B., Yu, X.: On Prodi-Serrin type conditions for the 3D Navier-Stokes equations. Nonlinear Anal. 190, 111612 (2020)

    MathSciNet  Google Scholar 

  26. Pokorny, M.: On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron. J. Differ. Equ. 2003(11), 1–8 (2003)

    MathSciNet  Google Scholar 

  27. Pokorný, M., Zhou, Y.: On the regularity of the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity 23, 1097–1107 (2010)

    MathSciNet  Google Scholar 

  28. Qian, C.: A generalized regularity criterion for 3D Navier-Stokes equations in terms of one velocity component. J. Differ. Equ. 360, 3477–3494 (2016)

    MathSciNet  Google Scholar 

  29. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier-Stokes Equations: Classical Theory. Cambridge Studies in Advanced Mathematics, vol. 157. Cambridge University Press, Cambridge (2016)

  30. Seregin, G.: Lecture Notes on Regularity Theory for the Navier-Stokes Equations. World Scientific, Hackensack, NJ (2015)

    Google Scholar 

  31. Sin, C.: A regularity criterion for 3D shear thinning fluids in terms of the direction of vorticity. Nonlinear Anal. Real World Appl. 70, 103783 (2023)

    MathSciNet  Google Scholar 

  32. Sin, C., Baranovskii, E.S.: A note on regularity criterion for 3D shear thickening fluids in terms of velocity. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02657-z

    Article  Google Scholar 

  33. Sin, C., Pak, J., Baranovskii, E.S.: Regularity criteria for 3D shear-thinning fluids in terms of two components of vorticity. Math. Methods Appl. Sci. 46(17), 18387–18399 (2023)

    MathSciNet  Google Scholar 

  34. Skalak, Z.: A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. J. Math. Phys. 121506(55), 1–7 (2014)

    MathSciNet  Google Scholar 

  35. Skalak, Z.: On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. Nonlinear Anal. 104, 84–89 (2014)

    MathSciNet  Google Scholar 

  36. Skalak, Z.: Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient. Nonlinear Anal. 118, 1–21 (2015)

    MathSciNet  Google Scholar 

  37. Sohr, H.: The Navier-Stokes equations: An Elementary Functional Analytic Approach. Birkhauser Advanced Texts. Birkhauser-Verlag, Basel (2001)

    Google Scholar 

  38. Tsai, T.-P.: Lectures on Navier-Stokes Equations. Graduate Studies in Mathematics, vol. 192. American Mathematical Society, New York (2017)

  39. Wolf, J.: Existence of weak solutions to the equations of nonstationary motion of non-Newtonian fluids with shear-dependent viscosity. J. Math. Fluid Mech. 9(1), 104–138 (2007)

    MathSciNet  Google Scholar 

  40. Yang, J.: Regularity criteria for 3D shear thinning fluids via two velocity components. Comput. Math. Appl. 77(10), 2854–2858 (2019)

    MathSciNet  Google Scholar 

  41. Yang, J.: Geometric constrains for global regularity of 3D shear thickening fluids. Acta Math. Appl. Sin. Engl. Ser. 40, 205–210 (2024)

    MathSciNet  Google Scholar 

  42. Ye, Z.: Remarks on the regularity criterion to the Navier-Stokes equations via the gradient of one velocity component. J. Math. Anal. Appl. 435, 1623–1633 (2016)

    MathSciNet  Google Scholar 

  43. Zhang, Z.: An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component. Z. Angew. Math. Phys. 66, 1707–1715 (2015)

    MathSciNet  Google Scholar 

  44. Zhang, Z., Wang, S.: Serrin type regularity criterion for the shear thinning fluids via the velocity field. Appl. Math. Lett. 116, 107011 (2021)

    MathSciNet  Google Scholar 

  45. Zhang, Z., Xian, Y.: A note on the regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component. J. Math. Anal. Appl. 432, 603–611 (2015)

    MathSciNet  Google Scholar 

  46. Zhou, Y.: A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Meth. Appl. Anal. 9(4), 563–578 (2002)

    MathSciNet  Google Scholar 

  47. Zhou, Y., Pokorny, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50, 1496–1514 (2009)

    MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to obtaining the results of this paper.

Corresponding author

Correspondence to Evgenii S. Baranovskii.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Pak, J., Sin, C. et al. Regularity results for 3D shear-thinning fluid flows in terms of the gradient of one velocity component. Z. Angew. Math. Phys. 75, 69 (2024). https://doi.org/10.1007/s00033-024-02210-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02210-1

Keywords

Mathematics Subject Classification

Navigation