Skip to main content
Log in

A Review of EPR and Magnetization Investigations of Doped Nanoparticles of Transition Metal Oxides and SiCN: Functional Materials and Spintronic Devices

  • Review
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Recent EPR and magnetization measurements of the properties of nano-particles of dilute magnetic semiconductors (DMS) of metal oxides and SiCN, doped with transition metal ions, are reviewed. This includes SnO2 doped with Co2+, Fe3+, Cr3+ ions; CeO2 doped with Ni2+, Co2+ ions; ZnO doped with Co2+, Fe3+ ions TiO2 doped with Fe3+ ions, together with SiCN nanoceramics, doped with transition metal ions Fe3+, Mn2+. They reveal that the method of synthesis, surface properties, oxygen vacancies, and size of the nanoparticles are important factors that determine the magnetic properties, and thus the EPR spectra, of metal oxide nanostructured particles. There is a coexistence of ferromagnetic and paramagnetic phases in metal oxides. The oxygen vacancies are responsible for their ferromagnetism. The measured saturation magnetization of metal oxides is found to depend both on the doping level of impurities and annealing temperature. The undoped metal oxide nanoparticles are also found to exhibit ferromagnetism due to oxygen vacancies. These properties imply that they are potentially suitable to be developed as functional spintronic materials due to their extraordinary combination of ferromagnetism at room temperature and tunable conductivity. The EPR measurements on Fe- and Mn-doped SiCN samples, annealed at various temperatures, revealed that they were superparamagnetic; as well, their EPR spectra depended significantly on the sizes of the nanoparticles. As for field cooling (FC) and zero-field cooling (ZFC) magnetization measurements on Fe-doped SiCN samples, it was found that the difference between the ZFC and FC magnetizations decreased with the increasing annealing temperatures of the samples, implying that the homogeneity in the distribution of the sizes of nanoparticles increased with increasing annealing temperature This result can be exploited for practical applications of Fe-doped SiCN nanoceramics as functional materials by synthesizing its samples by annealing at temperatures even higher than 1400 °C, the highest annealing temperature of all the samples investigated here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon a reasonable request.

References

  1. J.M.D. Coey, M. Venkatesan, J. Appl. Phys. 91, 8345–8350 (2002)

    Article  ADS  Google Scholar 

  2. T. Dietl, H. Ohono, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  3. J.M.D. Coey, A.P. Douvalls, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332–1334 (2004)

    Article  ADS  Google Scholar 

  4. J. Hays, A. Punnoose, R. Baldner, M.H. Engelhard, J. Peloquin, K.M. Reddy, Phys. Rev. B 72, 075203 (2005)

    Article  ADS  Google Scholar 

  5. A. Punnoose, J. Hays, A. Thurber, M.H. Engelhard, R.K. Kukkadapu, C. Wang, V. Shutthanandan, S. Thevuthasan, Phys. Rev. B 72, 054402 (2005)

    Article  ADS  Google Scholar 

  6. C. Van Komen, A. Thurber, K.M. Reddy, J. Hays, A. Punnoose, J. Appl. Phys. 103, 07D141 (2008)

    Article  Google Scholar 

  7. S.K. Misra, S.I. Andronenko, K.M. Reddy, J. Hays, A. Punnoose, J. Appl. Phys. 99(08), M106 (2006)

    Article  Google Scholar 

  8. S.K. Misra, S.I. Andronenko, K.M. Reddy, J. Hays, A. Thurber, A. Punnoose, J. Appl. Phys. 101, 09H120 (2007)

    Article  Google Scholar 

  9. S.K. Misra, S.I. Andronenko, A. Punnoose, D. Tipikin, J.H. Freed, Appl. Magn. Reson. 36(2–4), 291–295 (2009)

    Article  Google Scholar 

  10. S.K. Misra, S.I. Andronenko, S. Rao, V.B. Bhat, C. Van Komen, A. Punnoose, J. Appl. Phys. 105, 07C514 (2009)

    Article  Google Scholar 

  11. S.K. Misra, S.I. Andronenko, M.E. Engelhard, A. Thurber, K.M. Reddy, A. Punnoose, J. Appl. Phys. 103, 07D122 (2008)

    Article  Google Scholar 

  12. A. Punnoose, K.M. Reddy, J. Hayes, A. Thurber, S. Andronenko, S.K. Misra, Appl. Magn. Reson. 36, 331–345 (2009)

    Article  Google Scholar 

  13. S.K. Misra, S.I. Andronenko, J.D. Harris, A. Thurber, G.L. Beausoleil II, A. Punnoose. J. Nanosci. Nanotechnol. 13, 6798–6805 (2013)

    Article  Google Scholar 

  14. S.K. Misra, S.I. Andronenko, A. Thurber, A. Punnoose, A. Nalepa, J. Magn. Magn. Mater. 363, 82–87 (2014)

    Article  ADS  Google Scholar 

  15. S.K. Misra, S.I. Andronenko, S.S. Rao, J. Chess, A. Punnoose, J. Magn. Magn. Mater. 394, 138–142 (2015)

    Article  ADS  Google Scholar 

  16. S.K. Misra, S.I. Andronenko, D. Tipikin, J.H. Freed, V. Somani, O. Prakash, J. Magn. Magn. Mater. 401, 495–505 (2016)

    Article  ADS  Google Scholar 

  17. A. Prakash, S.K. Misra, D. Bahadur, Nanotechnology 24, 095705 (2013)

    Article  ADS  Google Scholar 

  18. D.Y. Lin, C.F. Li, Y.S. Huang, Y.C. Jong, Y.F. Chen, L.C. Chen, C.K. Chen, K.H. Chen, D.M. Bhusari, Phys. Rev. B 56, 6498–6501 (1997)

    Article  ADS  Google Scholar 

  19. A. Leo, S. Andronenko, I. Stiharu, R.B. Bhat, Sensors 10, 1338–1354 (2010)

    Article  ADS  Google Scholar 

  20. A. Leo, S.I. Andronenko, I. Stiharu, Int. J. Mater. Sci. Res. 1(2), 36–42 (2018)

    Article  Google Scholar 

  21. I. Stiharu, S. Andronenko, A. Zinnatullin, F. Vagizov, Micromachines 14(5), 925 (2023)

    Article  Google Scholar 

  22. S. Andronenko, I. Stiharu, M. Packirisamy, H. Moustapha, P. Dionne, in Proceedings of international conference on MEMS, NANO, and smart systems, 2005, Banff, Alberta, Canada (2005), p. 355–358

  23. N.P. Stepina, R.V. Pushkarev, A.F. Zinovieva, V.V. Kirienko, A.S. Bogomyakov, A.K. Gutakovskii, N.I. Fainer, A.V. Dvurechenskii, J. Magn. Magn. Mater. 499, 166242 (2019)

    Article  Google Scholar 

  24. S.I. Andronenko, S.K. Misra, Appl. Magn. Reson. 46(6), 693–707 (2015)

    Article  Google Scholar 

  25. M. Xu-Dong, Y. Fu, L. Xiao-yu, Key Eng. Mater. 531–532, 325–328 (2013)

    Google Scholar 

  26. S.I. Andronenko, I. Stiharu, S.K. Misra, J. Appl. Phys. 99, 113907 (2006)

    Article  ADS  Google Scholar 

  27. S.I. Andronenko, I. Stiharu, S.K. Misra, C. Lacroix, D. Menard, Appl. Magn. Reson. 38(4), 385–402 (2010)

    Article  Google Scholar 

  28. S.K. Misra, S.I. Andronenko, Chapter 10: EPR and FMR of SiCN ceramics and SiCN magnetic derivatives, in EPR in Modern Carbon-based Materials, ed. by D. Savchenko, A.H. Kassiba. Frontiers in Magnetic Resonance, vol. 1 (Bentham Science STM-publisher, Sharjah, 2018), pp.197–224

    Google Scholar 

  29. S.I. Andronenko, A.A. Rodionov, S.K. Misra, Appl. Magn. Reson. 49(4), 335–344 (2018)

    Article  Google Scholar 

  30. S.K. Misra, S. Andronenko, I. Gilmutdinov, R. Yusupov, Appl. Magn. Reson. 49(12), 1397–1415 (2018)

    Article  Google Scholar 

  31. S.I. Andronenko, A. Leo, I. Stiharu, S.K. Misra, Appl. Magn. Reson. 39(4), 347–356 (2010)

    Article  Google Scholar 

  32. N.I. Fainer, R.V. Pushkarev, A.N. Golubenko, Y.M. Rumyantsev, E.A. Maksimovskii, V.V. Kaichev, Glass Phys. Chem. 41(6), 853–862 (2015)

    Article  Google Scholar 

  33. R.V. Pushkarev, N.I. Fainer, A.N. Golubenko, Y.M. Rumyantsev, V.A. Nadolinnyi, E.A. Maksimovskii, E.V. Korotaev, V.V. Kaichev, Glass Phys. Chem. 42, 490–496 (2016)

    Article  Google Scholar 

  34. R.V. Pushkarev, N.I. Fainer, K.K. Maurya, Superlattices Microstruct. 102, 119–126 (2017)

    Article  ADS  Google Scholar 

  35. R. Pushkarev, N. Fainer, V. Kirienko, A. Matsynin, V. Nadolinnyy, I. Merenkov, S. Trubina, S. Ehrenburg, K. Kvashina, J. Mater. Chem. C 7(14), 4250–4258 (2019)

    Article  Google Scholar 

  36. N.I. Fainer, A.G. Plekhanov, R.V. Pushkarev, V.R. Shayapov, E.A. Maksimovskiy, V.A. Nadolinny, E.V. Korotaev, V.V. Kaichev, J. Struct. Chem. 61, 1865–1875 (2020)

    Article  Google Scholar 

  37. M.B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J.S. Thakur, G. Lawes, R. Naik, V.M. Naik, P.P. Vaishnava, Appl. Phys. Lett. 93, 231909 (2008)

    Article  ADS  Google Scholar 

  38. T.M. Hammad, J.K. Salem, R.G. Harrison, Appl. Nanosci. 3, 133–139 (2013)

    Article  ADS  Google Scholar 

  39. P. Jakes, E. Erdem, Phys. Status Solidi (RRL) 5, 56–58 (2011)

    Article  ADS  Google Scholar 

  40. S.B. Orlinskii, J. Schmidt, P.G. Baranov, V. Lorrmann, D. Rauh, I. Riedel, V. Dyakonov, Phys. Rev. B 77, 115334 (2008)

    Article  ADS  Google Scholar 

  41. A. Thurber, K.M. Reddy, A. Punnoose, J. Appl. Phys. 101, 09N506 (2007)

    Article  Google Scholar 

  42. L.M. Johnson, A. Thurber, J. Anghel, M. Sabetian, M.H. Engelhard, D.A. Tenne, C.B. Hanna, A. Punnoose, Phys. Rev. B 82, 054419 (2010)

    Article  ADS  Google Scholar 

  43. A. Ney, A. Kovács, V. Ney, S. Ye, K. Ollefs, T. Kammermeier, F. Wilhelm, A. Rogalev, R.E. Dunin-Borkowski, New J. Phys. 13, 103001 (2011)

    Article  ADS  Google Scholar 

  44. P. Sati, R. Hayn, R. Kuzian, S. Régnier, S. Schäfer, A. Stepanov, C. Morhain, C. Deparis, M. Laugt, M. Goiran, Z. Golacki, Phys. Rev. Lett. 96, 017203 (2006)

    Article  ADS  Google Scholar 

  45. S. D’Ambrosio, V. Pashchenko, J.-M. Mignot, O. Ignatchik, R.O. Kuzian, A. Savoyant, Z. Golacki, K. Grasza, A. Stepanov, Phys. Rev. B 86, 035202 (2012)

    Article  ADS  Google Scholar 

  46. D.V. Azamat, A. Dejneka, V.A. Trepakov, L. Jastrabik, M. Fanciulli, V.Y. Ivanov, M. Godlewski, V.I. Sokolov, J. Rosa, A.G. Badalyan, Phys. Status Solidi RRL 5, 138–140 (2011)

    Article  Google Scholar 

  47. O. Toulemonde, M. Gaudon, J. Phys. D Appl. Phys. 43, 045001 (2010)

    Article  ADS  Google Scholar 

  48. B. Pal, P.K. Giri, J. Appl. Phys. 108, 084322 (2010)

    Article  ADS  Google Scholar 

  49. S.B. Orlinskii, J. Schmidt, P.G. Baranov, D.M. Hofmann, C. de Mello Donegá, A. Meijerink, Phys. Rev. Lett. 92, 047603 (2004)

    Article  ADS  Google Scholar 

  50. S.B. Orlinskii, J. Schmidt, P.G. Baranov, C. de Mello Donegá, A. Meijerink, Phys. Rev. B 79, 165316 (2009)

    Article  ADS  Google Scholar 

  51. K.M. Whitaker, S.T. Ochsenbein, V.Z. Polinger, D.R. Gamelin, J. Phys. Chem. C 112, 14331 (2008)

    Article  Google Scholar 

  52. S.T. Ochsenbein, Y. Feng, K.M. Whitaker, E. Badaeva, W.K. Liu, X. Li, D.R. Gamelin, Nat. Nanotechnol. 4, 681–687 (2009)

    Article  ADS  Google Scholar 

  53. P.G. Baranov, S.B. Orlinskii, C. de Mello Donegá, J. Schmidt, Appl. Magn. Res. 39, 151–183 (2010)

    Article  Google Scholar 

  54. P.G. Baranov, S.B. Orlinskii, C. de Mello Donegá, J. Schmidt, Phys. Status Solidi B 250, 2137–2140 (2013)

    Article  ADS  Google Scholar 

  55. C.P. Kumar, N.O. Gopal, T.C. Wang, M.-S. Wong, S.C. Ke, J. Phys. Chem. B 110(11), 5223–5229 (2006)

    Article  Google Scholar 

  56. L.S. Molochnikov, K.I. Borodin, A.E. Yermakov, M.A. Uimin, A.S. Minin, A.V. Vostroknutova, R.M. Eremina, M.I. Kurkin, S.F. Konev, A.S. Konev, A.M. Murzakayev, V.S. Gaviko, Mater. Chem. Phys. 276, 125327 (2022)

    Article  Google Scholar 

  57. A. Yermakov, M. Uimin, K. Borodin, A. Minin, D. Boukhvalov, D. Starichenko, A. Volegov, R. Eremina, I. Yatsuk, G. Zakharova, V. Gaviko, Magnetochemistry 9(1), 26 (2023)

    Article  Google Scholar 

  58. A. Achkeev, I.R. Vakhitov, R.I. Khabibullin, L.R. Tagirov, J. Phys. Conf. Ser. 394, 012018 (2012)

    Article  Google Scholar 

  59. G.A. Alanko, A. Thurber, C.B. Hanna, A. Punnoose, J. Appl. Phys. 111, 07C321 (2012)

    Article  Google Scholar 

  60. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74, 161306(R) (2006)

    Article  ADS  Google Scholar 

  61. Q.-Y. Wen, H.-W. Zhang, Y.-Q. Song, Q.-H. Yang, H. Zhu, J.F.Q. Xiao, J. Phys. Condens. Matter 19, 246205 (2007)

    Article  ADS  Google Scholar 

  62. X.X. Wei, C. Song, K.W. Geng, F. Zeng, B. He, F. Pan, J. Phys. Condens. Matter 18, 7471–7479 (2006)

    Article  ADS  Google Scholar 

  63. J.M.D. Coey, P. Stamenov, P.D. Gunning, M. Venkatesan, K. Paul, New J. Phys. 12, 053025 (2010)

    Article  ADS  Google Scholar 

  64. D.M. Edwards, M.I. Katsnelson, J. Phys. C: Condens. Matter 18, 7209–7226 (2006)

    ADS  Google Scholar 

  65. T.S. Altshuler, M.S. Bresler, Y.V. Goryunov, JETP Lett. 81(9), 475–478 (2005)

    Article  ADS  Google Scholar 

  66. S. Trassl, M. Puchinger, E. Rössler, G. Ziegler, J. Eur. Ceram. Soc. 23, 781–789 (2003)

    Article  Google Scholar 

  67. K. Wang, B. Ma, L. Zhang, Zh. Sun, Y. Wang, J. Am. Ceram. Soc. 102(10), 6038–6047 (2019)

    Article  Google Scholar 

  68. M. Hojamberdiev, R.M. Prasad, C. Fasel, R. Riedel, E. Ionescu, Eur. J. Ceram. Soc. 33, 2465–3242 (2013)

    Article  Google Scholar 

  69. M. Zaheer, T. Schmalz, G. Motz, R. Kempe, Chem. Soc. Rev. 41, 5102–5116 (2012)

    Article  Google Scholar 

  70. G. Mera, M. Gallei, S. Bernard, E. Ionescu, Nanomaterials 5, 468–540 (2015)

    Article  Google Scholar 

  71. X. Yan, X. Cheng, G.R. Han, Hauser, R. Riedel, Key Eng. Mater. 353–358, 1485–1488 (2007)

    Article  Google Scholar 

  72. S. Zhou, X. Chen, J. Phys. D Appl. Phys. 52, 393001 (2019)

    Article  Google Scholar 

  73. Z. Zhang, D. Dmytriieva, S. Molatta, S. Molatta, J. Wosnitza, Y. Wang, M. Helm, S. Zhou, H. Kühne, Phys. Rev. B 95, 085203 (2017)

    Article  ADS  Google Scholar 

  74. R.-W. Zhou, X.-C. Liu, X.-C. Liu, F. Li, E.-W. Shi, Mater. Lett. 156, 54–57 (2015)

    Article  Google Scholar 

  75. N.A. Usov, J. Appl. Phys. 109, 023913 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SKM is grateful to NSERC (Natural Sciences and Engineering Research Council of Canada) for partial financial support.

Funding

This work was partially supported by Natural Sciences and Engineering Research Council of Canada (Grant No. A4438).

Author information

Authors and Affiliations

Authors

Contributions

SKM and SIA discussed the relevant material from the published papers to be included in this article and contributed equally to the preparation of the final manuscript.

Corresponding author

Correspondence to Sushil K. Misra.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

A note about John Pilbrow: I (SKM) first met John Pilbrow at a Rocky Mountain conference on EPR in 1980s. He invited me to have lunch together to discuss our respective research work in EPR. Since then I had the pleasure of meeting him at several other conferences, developing our friendship. I was fascinated by his amiable, soft spoken and humble personality. This led to my spending three months of sabbatical at Monash University in Melbourne, Victoria (Australia) from January to April, 1997, during which I collaborated with him using his new Bruker pulsed X-band spectrometer, investigating spin-lattice relaxation in samples, among others, of Piklington glass that he had, which led to a joint publication in Phys. Rev. B. During my sojourn at Monash I had lunch with him almost every day. Apart from academic collaboration, I became a family friend, getting to know his children and grandchildren. I am delighted to contribute this article on the occasion of his 85th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, S.K., Andronenko, S.I. A Review of EPR and Magnetization Investigations of Doped Nanoparticles of Transition Metal Oxides and SiCN: Functional Materials and Spintronic Devices. Appl Magn Reson (2024). https://doi.org/10.1007/s00723-024-01648-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00723-024-01648-w

Navigation