Skip to main content
Log in

A Review of Additives for Water Mist Fire Suppression Systems

  • Review Paper
  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

As the complexity and the cost of infrastructures have risen, the need for a fast, reliable, cost-effective and clean fire extinguishing system has become important. Water mist is a clean and effective technology to deal with most types of fires. Over the years, chemicals have been added to the water to improve the performance of the mist and deal with new types of fires. This review presents an exhaustive state of the art on additives for water mist technology over the last fifty years. Eleven publishers were reviewed to form the corpus of almost one hundred articles. A systematic review of the articles highlighted that alkali metal compounds have been the main focus of research. Metal-based compounds have also proved to be effective. Surfactants remain an additive of choice in the formulation of fire-fighting foams and as additives for water mist but hydrocarbon surfactants should be preferred to fluor-based ones for environmental reasons. Solvents have proved to be a new, clean and potent class of water mist additives worthy of further investigation. Overall, the toxicology and environmental impacts of most additives have not been addressed or are often overlooked as an important criterion for a water mist additive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. National Fire Protection Association: NFPA 750 (2023) Technical report

  2. European Committee for Standardization: EN 14972-1 (2020) Technical report

  3. British Standards Institution: BS 8489-1 (2016) Technical report

  4. UL: UL 2167 (2011) Technical report

  5. Interstandard Russia: GOST R 51043 (2002) Technical report

  6. People’s Republic of China Public Security Industry Standards: GA 1149 (2014) Technical report

  7. Standards Australia Committee FP/12: AS 4587 (2020) Technical report

  8. International Water Mist Association: Standards and Guidelines-IWMA (2023) https://iwma.net/publications/standards-and-guidelines

  9. Lefebvre AH, McDonell VG (2017) Atomization and sprays, (2nd edn.), CRC Press, Taylor & Francis Group, CRC Press is an imprint of the Taylor & Francis Group, an Informa business, Boca Raton

  10. Lu J, Chen B-H, Liang P, Sun Y, Fang Z, Huang S (2019) Experimental evaluation of protecting high-voltage electrical transformers using water mist with and without additives. Fire Technol 55(5):1671–1690. https://doi.org/10.1007/s10694-019-00825-9

    Article  Google Scholar 

  11. National Institute of Standards and Technology: NGP (2011)

  12. National Institute of Standards and Technology: suppressant: water & aqueous solutions (2011)

  13. Tapscott RE, Sheinson RS, Babushok V, Nyden MR, Gann RG (2001) Alternative fire suppressant chemicals: a research review with recommendations. NIST Tech Note 84:13

    Google Scholar 

  14. Jiang Z, Chow WK, Li SF (2007) Review on additives for new clean fire suppressants. Environ Eng Sci 24(5):663–674. https://doi.org/10.1089/ees.2006.0138

    Article  Google Scholar 

  15. Cui Y, Liu J (2021) Research progress of water mist fire extinguishing technology and its application in battery fires. Process Saf Environ 149:559–574. https://doi.org/10.1016/j.psep.2021.03.003

    Article  Google Scholar 

  16. Yuan S, Chang C, Yan S, Zhou P, Qian X, Yuan M, Liu K (2021) A review of fire-extinguishing agent on suppressing lithium-ion batteries fire. J Energy Chem 62:262–280. https://doi.org/10.1016/j.jechem.2021.03.031

    Article  Google Scholar 

  17. Lawson S (2015) Fee waivers for open access journals. Publications 3(3):155–167. https://doi.org/10.3390/publications3030155

    Article  Google Scholar 

  18. Baas J, Schotten M, Plume A, Côté G, Karimi R (2020) Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant Sci Stud 1(1):377–386. https://doi.org/10.1162/qss_a_00019

    Article  Google Scholar 

  19. Karlsson B, Quintiere JG (2000) Enclosure fire dynamics. Environmental and energy engineering series, CRC Press, Boca Raton

  20. Liu Z, Kim AK (1999) A review of water mist fire suppression systems-fundamental studies. J Fire Prot Eng 10(3):32–50. https://doi.org/10.1177/104239159901000303

    Article  Google Scholar 

  21. Sheinson RS, Penner-Hahn JE, Indritz D (1989) The physical and chemical action of fire suppressants. Fire Saf J 15(6):437–450. https://doi.org/10.1016/0379-7112(89)90015-5

    Article  Google Scholar 

  22. National Fire Protection Association (2002) Society of fire protection engineers: SFPE handbook of fire protection engineering, (3rd edn.), National Fire Protection Association; Society of Fire Protection Engineers, Quincy, Mass, Bethesda, Md

  23. Zhang T, Han Z, Du Z, Zhang Z, Liu K (2016) Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4/air cup-burner flame by water mist with additives. Int J Hydrogen Energy 41(33):15078–15088. https://doi.org/10.1016/j.ijhydene.2016.06.260

    Article  Google Scholar 

  24. Liu S, Soteriou MC, Colket MB, Senecal JA (2008) Determination of cup-burner extinguishing concentration using the perfectly stirred reactor model. Fire Saf J 43(8):589–597. https://doi.org/10.1016/j.firesaf.2008.01.004

    Article  Google Scholar 

  25. Senecal JA (2005) Flame extinguishing in the cup-burner by inert gases. Fire Saf J 40(6):579–591. https://doi.org/10.1016/j.firesaf.2005.05.008

    Article  Google Scholar 

  26. Miziolek AW, Tsang W, Herron JT (1997) Halon replacements: an overview. Halon Replace 611:1–6 https://doi.org/10.1021/bk-1995-0611.ch001

  27. Saito N, Ogawa Y, Saso Y, Liao C, Sakei R (1996) Flame-extinguishing concentrations and peak concentrations of N2, Ar, CO2 and their mixtures for hydrocarbon fuels. Fire Saf J 27(3):185–200. https://doi.org/10.1016/S0379-7112(96)00060-4

    Article  Google Scholar 

  28. Hunter SE, Li L, Dierdorf D, Armendinger T (2006) Improving water spray efficacy for fire suppression via CO2 Addition at high pressures and low temperatures: evidence for CO2 clathrate hydrate formation. Ind Eng Chem Res 45(21):7275–7286. https://doi.org/10.1021/ie060530p

    Article  Google Scholar 

  29. Lv D, Tan W, Zhu G, Liu L (2019) Gasoline fire extinguishing by 0.7 MPa water mist with multicomponent additives driven by CO2. Process Saf Environ 129:168–175. https://doi.org/10.1016/j.psep.2019.07.002

    Article  Google Scholar 

  30. Wang F, Liu H (2020) Comparative experiment study on fire prevention and extinguishing in goaf by N2-water mist and CO2-water mist. Arab J Geosci 13(17):856. https://doi.org/10.1007/s12517-020-05710-2

    Article  Google Scholar 

  31. Wang Q, Sun Y, Jiang J, Deng J, Shu C-M, Luo Z, Wang Q (2020) Inhibiting effects of gas–particle mixtures containing CO2, Mg(OH)2 particles, and NH4H2PO4 particles on methane explosion in a 20-L closed vessel. J Loss Prevent Proc 64:104082. https://doi.org/10.1016/j.jlp.2020.104082

    Article  Google Scholar 

  32. Pei B, Li S, Yang S, Yu M, Chen L, Pan R (2022) Flame propagation inhibition study on methane/air explosion using CO2 twin-fluid water mist containing potassium salt additives. J Loss Prevent Proc 78:104817. https://doi.org/10.1016/j.jlp.2022.104817

    Article  Google Scholar 

  33. Fengxiao W, Jinzhang J, Xiuyuan T (2022) Study on methane explosion suppression in diagonal pipe networks using a fine water mist containing KCl and an inert gas. ACS Omega 7(37):32959–32969. https://doi.org/10.1021/acsomega.2c02212

    Article  Google Scholar 

  34. Ndubizu CC, Ananth R, Tatem PA, Motevalli V (1998) On water mist fire suppression mechanisms in a gaseous diffusion flame. Fire Saf J 31(3):253–276. https://doi.org/10.1016/S0379-7112(98)00007-1

    Article  Google Scholar 

  35. Gupta M, Pasi A, Ray A, Kale SR (2013) An experimental study of the effects of water mist characteristics on pool fire suppression. Exp Therm Fluid Sci 44:768–778. https://doi.org/10.1016/j.expthermflusci.2012.09.020

    Article  Google Scholar 

  36. Ni X, Zheng Z, Li G, Wang X (2021) Evaluating the suppression effectiveness of hybrid nitrogen and water mist with a cup burner coflowing flame. Fire Mater 2021:9. https://doi.org/10.1002/fam.2966

    Article  Google Scholar 

  37. Zhang T, Hao L, Jiwei S, Bo W, Yong W, Xinchen S, Zidong G (2022) Synergistic inhibition effect on lithium-ion batteries during thermal runaway by N2-twin-fluid liquid mist. Case Stud Therm Eng 37:102269. https://doi.org/10.1016/j.csite.2022.102269

    Article  Google Scholar 

  38. Larsen ER (1995) The development of replacement agents. 6

  39. Kovalchuk NM, Trybala A, Starov V, Matar O, Ivanova N (2014) Fluoro-vs hydrocarbon surfactants: why do they differ in wetting performance? Adv Colloid Interface Sci 210:65–71. https://doi.org/10.1016/j.cis.2014.04.003

    Article  Google Scholar 

  40. Saito K, Ito A, Torikai H (2012) Water mist extinguishment contained with small amount of ethyl alcohol. Jpn Soc Mech Eng 2012:317–318

    Google Scholar 

  41. Kim AK, Dlugogorski BZ, Mawhinney JR (1994) The effect of foam additives on the fire suppression efficiency of water mist. 12

  42. Bagdassarov N, Dorfman A, Dingwell DB (2000) Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. Am Miner 85(1):33–40. https://doi.org/10.2138/am-2000-0105

    Article  Google Scholar 

  43. Sun ZH, Jiang JC, Qiao L (2012) Comparative study of additives effectiveness on portable water mist system. AMR 610–613:2501–2505. https://doi.org/10.4028/www.scientific.net/AMR.610-613.2501

    Article  Google Scholar 

  44. Koshiba Y, Iida K, Ohtani H (2015) Fire extinguishing properties of novel ferrocene/surfynol 465 dispersions. Fire Saf J 72:1–6. https://doi.org/10.1016/j.firesaf.2015.02.011

    Article  Google Scholar 

  45. Koshiba Y, Ohtani H (2016) Extinguishing pool fires with aqueous ferrocene dispersions containing gemini surfactants. J Loss Prevent Proc 40:10–16. https://doi.org/10.1016/j.jlp.2015.11.029

    Article  Google Scholar 

  46. Koshiba Y, Okazaki S, Ohtani H (2016) Experimental investigation of the fire extinguishing capability of ferrocene-containing water mist. Fire Saf J 83:90–98. https://doi.org/10.1016/j.firesaf.2016.05.006

    Article  Google Scholar 

  47. Koshiba Y, Tomita T, Ohtani H (2017) Ferrocene-containing emulsion-based fire-extinguishing agents. Fire Sci Technol 36(1):1–9. https://doi.org/10.3210/fst.36.1

    Article  Google Scholar 

  48. Koshiba Y, Tomita T, Ohtani H (2018) Oil-in-water microemulsion containing ferrocene: a new fire suppressant. Fire Saf J 98:82–89. https://doi.org/10.1016/j.firesaf.2018.04.005

    Article  Google Scholar 

  49. Ditch B (2018) The impact of thermal runaway on sprinkler protection recommendations for warehouse storage of cartoned lithium-ion batteries. Fire Technol 54(2):359–377. https://doi.org/10.1007/s10694-017-0687-6

    Article  Google Scholar 

  50. Andersson P, Arvidson M, Evegren F, Jandali M, Larsson F, Rosengren M (2018) Lion fire: extinguishment and mitigation of fires in LI-ion batteries at sea

  51. Zhu M-x, Zhu S-b, Gong J-h, Zhou Z (2018) Experimental study on fire and explosion characteristics of power lithium batteries with surfactant water mist. Procedia Eng 211:1083–1090. https://doi.org/10.1016/j.proeng.2017.12.113

    Article  Google Scholar 

  52. Liu Y, Duan Q, Xu J, Li H, Sun J, Wang Q (2020) Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling. J Energy Storage 28:101185. https://doi.org/10.1016/j.est.2019.101185

    Article  Google Scholar 

  53. Xu J, Duan Q, Zhang L, Liu Y, Sun J, Wang Q (2022) The enhanced cooling effect of water mist with additives on inhibiting lithium ion battery thermal runaway. J Loss Prevent Proc 77:104784. https://doi.org/10.1016/j.jlp.2022.104784

    Article  Google Scholar 

  54. Batov DV, Kartsev VN, Shtykov SN (2012) Preparation, heat capacity, and combustion characteristics of water-surfactant-halogenated hydrocarbon microemulsions suitable for combined fire-extinguishing means. Russ J Appl Chem 85(12):1905–1909. https://doi.org/10.1134/S107042721212018X

    Article  Google Scholar 

  55. LeFort G, Marshall AW, Pabon M (2009) Evaluation of surfactant enhanced water mist performance. Fire Technol 45(3):341–354. https://doi.org/10.1007/s10694-008-0068-2

    Article  Google Scholar 

  56. Huang X, Chen P, Lan M, Wang X, Liao G (2013) Experimental study of water drops with additive impact on wood surfaces. Procedia Eng 62:852–858. https://doi.org/10.1016/j.proeng.2013.08.135

    Article  Google Scholar 

  57. Lan M, Wang X, Chen P, Zhao X (2016) Effects of surface tension and wood surface roughness on impact splash of a pure and multi-component water drop. Case Stud Therm Eng 8:218–225. https://doi.org/10.1016/j.csite.2016.07.006

    Article  Google Scholar 

  58. Lan M, Wang X, Zhu P, Chen P (2015) Experimental study on the dynamic process of a water drop with additives impact upon hot liquid fuel surfaces. Energy Procedia 66:173–176. https://doi.org/10.1016/j.egypro.2015.02.008

    Article  Google Scholar 

  59. Xu M, Zhang J, Chen R, Lu S (2019) Single droplet with or without additives impacting on high-temperature burning liquid pool. Int J Heat Mass Trans 139:77–86. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.145

    Article  Google Scholar 

  60. Bin-bin W, Guang-xuan L (2013) Comparison tests determine the ratio between in the constituent the compound additive and experimental study on fire extinguishing of water mist with this multi-component additive. Procedia Eng 52:428–434. https://doi.org/10.1016/j.proeng.2013.02.164

    Article  Google Scholar 

  61. Koshiba Y, Yamamoto Y, Ohtani H (2019) Fire suppression efficiency of water mists containing organic solvents. J Loss Prevent Proc 62:103973. https://doi.org/10.1016/j.jlp.2019.103973

    Article  Google Scholar 

  62. Koshiba Y, Sugimoto M (2021) Fire-suppression capability of surfactant-free aqueous dispersions of submicron-sized ferrocene particles. Case Stud Therm Eng 28:101459. https://doi.org/10.1016/j.csite.2021.101459

    Article  Google Scholar 

  63. Peshoria S, Nandini D, Tanwar RK, Narang R (2020) Short-chain and long-chain fluorosurfactants in firefighting foam: a review. Environ Chem Lett 18(4):1277–1300. https://doi.org/10.1007/s10311-020-01015-8

    Article  Google Scholar 

  64. Yao B, Sun R, Alinezhad A, Kubátová A, Simcik MF, Guan X, Xiao F (2022) The first quantitative investigation of compounds generated from PFAS, PFAS-containing aqueous film-forming foams and commercial fluorosurfactants in pyrolytic processes. J Hazard Mater 436:129313. https://doi.org/10.1016/j.jhazmat.2022.129313

    Article  Google Scholar 

  65. Mesli B, Gökalp I (2000) Extinction limits of opposed jet turbulent premixed methane air flames with sprays of water and NaCI-water solution. Comb Sci Technol 153(1):193–211. https://doi.org/10.1080/00102200008947260

    Article  Google Scholar 

  66. Cao X, Ren J, Zhou Y, Wang Q, Gao X, Bi M (2015) Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive. J Hazard Mater 285:311–318. https://doi.org/10.1016/j.jhazmat.2014.11.016

    Article  Google Scholar 

  67. Cao X, Ren J, Bi M, Zhou Y, Wang Q (2016) Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive. J Loss Prevent Proc 43:352–360. https://doi.org/10.1016/j.jlp.2016.06.012

    Article  Google Scholar 

  68. Yu M, Wan S, Xu Y, Zheng K, Liang D (2016) Suppressing methane explosion overpressure using a charged water mist containing a NaCl additive. J Nat Gas Sci Eng 29:21–29. https://doi.org/10.1016/j.jngse.2015.12.040

    Article  Google Scholar 

  69. Pei B, Li J, Wang Y, Wen X, Yu M, Jing G (2019) Synergistic inhibition effect on methane/air explosions by N2-twin-fluid water mist containing sodium chloride additive. Fuel 253:361–368. https://doi.org/10.1016/j.fuel.2019.05.035

    Article  Google Scholar 

  70. Wei S, Yu M, Pei B, Xu M, Guo J, Hu Z (2022) Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3. Fuel 328:125235. https://doi.org/10.1016/j.fuel.2022.125235

    Article  Google Scholar 

  71. Försth M, Möller K (2013) Enhanced absorption of fire induced heat radiation in liquid droplets. Fire Saf J 55:182–196. https://doi.org/10.1016/j.firesaf.2012.10.005

    Article  Google Scholar 

  72. Dombrovsky LA, Levashov VY, Kryukov AP, Dembele S, Wen JX (2020) A comparative analysis of shielding of thermal radiation of fires using mist curtains containing droplets of pure water or sea water. Int J Therm Sci 152:106299. https://doi.org/10.1016/j.ijthermalsci.2020.106299

    Article  Google Scholar 

  73. Chow WK, Jiang Z, Li SF, Han DL (2007) Improving fire suppression of water mist by chemical additives. Polym-Plast Technol 46(1):51–60. https://doi.org/10.1080/03602550600948756

    Article  Google Scholar 

  74. Cong B, Liao G (2009) Experimental studies on water mist suppression of liquid fires with and without additives. J Fire Sci 27(2):101–123. https://doi.org/10.1177/0734904108095339

    Article  Google Scholar 

  75. Chelliah HK, Lazzarini AK, Wanigarathne PC, Linteris GT (2002) Inhibition of premixed and non-premixed flames with fine droplets of water and solutions. Proc Combust Inst 29(1):369–376. https://doi.org/10.1016/S1540-7489(02)80049-9

    Article  Google Scholar 

  76. Yang L, Zhao J (2011) Fire extinct experiments with water mist by adding additives. J Therm Sci 20(6):563–569. https://doi.org/10.1007/s11630-011-0511-4

    Article  Google Scholar 

  77. Cao X-y, Bi M-s, Ren J-j, Chen B (2019) Experimental research on explosion suppression affected by ultrafine water mist containing different additives. J Hazard Mater 368:613–620. https://doi.org/10.1016/j.jhazmat.2019.01.006

    Article  Google Scholar 

  78. Shilling H, Dlugogorski BZ, Kennedy EM (1996) Extinction of diffusion flames by ultrafine water mist doped with metal chlorides. Begell House, Sydney

    Google Scholar 

  79. Tapscott RE (2002) Thermodynamics of metal agent fire extinguishment, 7

  80. Feng M-H, Tao J-J, Qin J, Fei Q (2016) Extinguishment of counter-flow diffusion flame by water mist derived from aqueous solutions containing chemical additives. J Fire Sci 34(1):51–68. https://doi.org/10.1177/0734904115618220

    Article  Google Scholar 

  81. Zhang T, Du Z-m, Han Z-y, Liu K (2016) Performance evaluation of water mist with additives in suppressing cooking oil fires based on temperature analysis. Appl Therm Eng 102:1069–1074. https://doi.org/10.1016/j.applthermaleng.2016.03.078

    Article  Google Scholar 

  82. Zhang T, Hao L, Zhiyue H, Zhiming D, Yong W (2017) Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics. Appl Therm Eng 122:429–438. https://doi.org/10.1016/j.applthermaleng.2017.05.053

    Article  Google Scholar 

  83. Zhang T, Hao L, Han Z, Yong W, Zidong G, Chaoqing W (2019) Experimental study on the synergistic effect of fire extinguishing by water and potassium salts. J Therm Anal Calorim 138(1):857–867. https://doi.org/10.1007/s10973-019-08234-4

    Article  Google Scholar 

  84. Zhang T, Cunwei Z, Hao L, Zhiyue H (2020) Experimental investigation of novel dry liquids with aqueous potassium Solution@Nano-SiO2 for the suppression of liquid fuel fires: preparation, application, and stability. Fire Saf J 115:103144. https://doi.org/10.1016/j.firesaf.2020.103144

    Article  Google Scholar 

  85. Liu H, Zhang T, Xia D, Liang Q (2018) Experimental study on effectiveness of water mist containing potassium salts in extinguishing liquid pool fire. In: The proceedings of 11th Asia-Oceania symposium on fire science and technology 11th, pp 649–665. Springer, Singapore. https://doi.org/10.1007/978-981-32-9139-3_47

  86. Wu G-Y, Tsai K-C, Chow WK (eds.) (2020) The proceedings of 11th Asia-Oceania symposium on fire science and technology. Springer, Singapore . https://doi.org/10.1007/978-981-32-9139-3

  87. Badhuk P, Ravikrishna RV (2022) Flame inhibition by aqueous solution of Alkali salts in methane and LPG laminar diffusion flames. Fire Saf J 130:103586. https://doi.org/10.1016/j.firesaf.2022.103586

    Article  Google Scholar 

  88. Sheinson RS, Ayers S, Anleitner R, Maranghides A (2004) Heptafluoropropane with water spray cooling system as a total flooding Halon 13010 replacement: system implementation parameters. vol 10

  89. Ni X, Chow WK (2011) Performance evaluation of water mist with bromofluoropropene in suppressing gasoline pool fires. Appl Therm Eng 31(17–18):3864–3870. https://doi.org/10.1016/j.applthermaleng.2011.07.034

    Article  Google Scholar 

  90. Mykhalichko B, Lavrenyuk H, Mykhalichko O (2019) New water-based fire extinguishant: elaboration, bench-scale tests, and flame extinguishment efficiency determination by cupric chloride aqueous solutions. Fire Saf J 105:188–195. https://doi.org/10.1016/j.firesaf.2019.03.005

    Article  Google Scholar 

  91. Liu J, Cong B (2013) Experimental evaluation of water mist with metal chloride additives for suppressing CH4/air cup-burner flames. J Therm Sci 22(3):269–274. https://doi.org/10.1007/s11630-013-0623-0

    Article  Google Scholar 

  92. Joseph P, Nichols E, Novozhilov V (2013) A comparative study of the effects of chemical additives on the suppression efficiency of water mist. Fire Safety J 58:221–225. https://doi.org/10.1016/j.firesaf.2013.03.003

    Article  Google Scholar 

  93. Koshiba Y, Takahashi Y, Ohtani H (2012) Flame suppression ability of metallocenes (nickelocene, cobaltcene, ferrocene, manganocene, and chromocene). Fire Saf J 51:10–17. https://doi.org/10.1016/j.firesaf.2012.02.008

    Article  Google Scholar 

  94. Koshiba Y, Agata S, Takahashi T, Ohtani H (2015) Direct comparison of the flame inhibition efficiency of transition metals using metallocenes. Fire Saf J 73:48–54. https://doi.org/10.1016/j.firesaf.2015.03.003

    Article  Google Scholar 

  95. Linteris GT, Katta VR, Takahashi F (2004) Experimental and numerical evaluation of metallic compounds for suppressing cup-burner flames. Comb Flame 138(1–2):78–96. https://doi.org/10.1016/j.combustflame.2004.04.003

    Article  Google Scholar 

  96. Korobeinichev OP, Shmakov AG, Shvartsberg VM, Chernov AA, Yakimov SA, Koutsenogii KP, Makarov VI (2012) Fire suppression by low-volatile chemically active fire suppressants using aerosol technology. Fire Saf J 51:102–109. https://doi.org/10.1016/j.firesaf.2012.04.003

    Article  Google Scholar 

  97. Korobeinichev O, Shmakov A, Chernov A, Bolshova T, Terenteva Y, Borisov G (2013) The influence of K4[Fe(CN)6] aerosol on the flame speed of methane-air flame. Procedia Eng 62:331–336. https://doi.org/10.1016/j.proeng.2013.08.072

    Article  Google Scholar 

  98. Ni X, Zhang S, Zheng Z, Wang X (2018) Application of water@silica core-shell particles for suppressing gasoline pool fires. J Hazard Mater 341:20–27. https://doi.org/10.1016/j.jhazmat.2017.07.040

    Article  Google Scholar 

  99. Kuznetsov GV, Kropotova SS, Voytkov IS, Strizhak PA (2022) Influence of the component composition of extinguishing fluids on the droplet distribution in an aerosol cloud. Powder Technol 395:838–849. https://doi.org/10.1016/j.powtec.2021.10.032

    Article  Google Scholar 

  100. Yang K, Zhang P, Yue C, Chen K, Ji H, Xing Z, Hao Y, Jiang J (2020) Experimental research on methane/air explosion inhibition using ultrafine water mist containing methane oxidizing bacteria. J Loss Prevent Proc 67:104256. https://doi.org/10.1016/j.jlp.2020.104256

    Article  Google Scholar 

  101. Zhou Y, Wang Z, Gao H, Wan X, Qiu H, Zhang J, Di J (2022) Inhibitory effect of water mist containing composite additives on thermally induced jet fire in lithium-ion batteries. J Therm Anal Calorim 147(3):2171–2185. https://doi.org/10.1007/s10973-021-10673-x

    Article  Google Scholar 

  102. McDonnell D, Dlugogorski BZ, Kennedy EM (2002) Evaluation of transition metals for practical fire suppression systems

  103. Lu J, Liang P, Chen B, Wu C, Zhou T (2020) Investigation of the fire-extinguishing performance of water mist with various additives on typical pool fires. Comb Sci Technol 192(4):592–609. https://doi.org/10.1080/00102202.2019.1584798

    Article  Google Scholar 

  104. Yongyi C, Fang Q, Cui F, Jun Z (2013) Experimental study on wood crib fire suppression of water mist with additives. In: 2013 fourth international conference on intelligent systems design and engineering applications (ISDEA), pp 305–308. IEEE Computer Society, Zhangjiajie, Hunan, China. https://doi.org/10.1109/ISDEA.2013.473

  105. Takahashi Y, Suzuki S, Katsumi A, Harada N, Moroe Y, Kaburagi T, Kakazawa K (2007) A case of cardiac arrest due to poisoning by the contents of a fire extinguisher. Nihon Kyukyu Igakukai Zasshi 18:208–215

    Article  Google Scholar 

  106. Kraut JA, Mullins ME (2018) Toxic alcohols. N Engl J Med 378(3):270–280. https://doi.org/10.1056/NEJMra1615295

    Article  Google Scholar 

  107. Mather JD, Tapscott RE (2007) Environmentally acceptable fire extinguishants, vol 122

  108. Etz BD, Mifkovic M, Vyas S, Shukla MK (2022) High-temperature decomposition chemistry of trimethylsiloxane surfactants, a potential fluorine-free replacement for fire suppression. Chemosphere 308:136351. https://doi.org/10.1016/j.chemosphere.2022.136351

    Article  Google Scholar 

  109. Moody CA, Field JA (2000) Perfluorinated surfactants and the environmental implications of their use in fire-fighting foams. Environ Sci Technol 34(18):3864–3870. https://doi.org/10.1021/es991359u

    Article  Google Scholar 

  110. European chemicals agency: per-and polyfluoroalkyl substances (PFASs)-ECHA. https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas (2023)

  111. National Fire Protection Association: NFPA 704 (2022) https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=704

  112. Occupational health and safety administration: hazard communication-overview | Occupational Safety and Health Administration. https://www.osha.gov/hazcom (2023)

  113. European chemicals agency: information on chemicals-ECHA. https://echa.europa.eu/information-on-chemicals (2023)

  114. Jia H, Shen H, Xiang H, Li D, Zhai R (2020) Analysis of the fire-extinguishing effect and the weakening of flame intensification of nonionic liquid water mist*. Comb Sci Technol 192(5):902–914. https://doi.org/10.1080/00102202.2019.1596900

    Article  Google Scholar 

  115. Liang T, Li R, Li J, Xu Y, Zhong W, Zhao J, Lo S (2018) Extinguishment of hydrocarbon pool fires by ultrafine water mist with ammonium/amidogen compound in an improved cup burner. Fire Mater 42(8):889–896. https://doi.org/10.1002/fam.2644

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support and funding from the Agency for Defense Innovation (AID) and the French National Agency for Research (ANR) in the scope of the RAPID VIPERE and LabCom GreenSprink projects, respectively. The Agency for Defense Innovation and the Centre-Val de Loire Region are gratefully acknowledged for the PhD sponsorship of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonin Robinet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robinet, A., Chetehouna, K. A Review of Additives for Water Mist Fire Suppression Systems. Fire Technol (2024). https://doi.org/10.1007/s10694-024-01570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10694-024-01570-4

Keywords

Navigation