Skip to main content
Log in

Statistical Modelling of Thermostable Cellulase Production Conditions of Thermophilic Geobacillus sp. TP-1 Isolated from Tapovan Hot Springs of the Garhwal Himalayan Mountain Ranges, India

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A thermo-alkali stable cellulase from Geobacillus sp. TP-1 was isolated from Tapovan hot spring soil sample. The BLASTn sequence analysis of 16S rRNA sequence revealed that the isolate belonged to the Geobacillus genus and shared the highest degree of sequence similarity (99.43%) with the different strains of Geobacillus subterraneus. The neighbour joining method of multiple sequence alignment revealed that the 16S rRNA sequence of Geobacillus sp. TP-1 shows maximum similarity with Geobacillus stearothermophilus strain S_YE6-1017-022. One-Factor-At-a-Time analysis was used to optimize the carbon source, nitrogen source, pH, temperature, inoculum size and growth profile with respect to cellulase production. When compared to un-optimized basal media, optimised medium increased cellulase production by around 3.6 times. The Plackett Burman factorial design was employed to identify the critical medium components influencing cellulase activity and temperature was determined to have a significant effect on overall cellulase production. The current strain was capable of utilising lignocellulosic waste as an alternative carbon source. The use of sugarcane molasses and wheat bran as carbon sources resulted in a significant increase (~ 7.2 fold) in cellulase production in the current study, indicating the bacterium’s potential for valorising lignocellulosic biomass into value-added products, which encourages its use in lignocellulosic-based bio refineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the supporting data of this study are given within the article.

References

  1. Kant Bhatia S, Vivek N, Kumar V et al (2021) Molecular biology interventions for activity improvement and production of industrial enzymes. Bioresour Technol 324:124596

    Article  Google Scholar 

  2. Ehrlich GG (1979) Thermophilic microorganisms and life at high temperatures. Geochim Cosmochim Acta 43:948. https://doi.org/10.1016/0016-7037(79)90234-5

    Article  Google Scholar 

  3. Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227. https://doi.org/10.1111/j.1472-4669.2005.00052.x

    Article  Google Scholar 

  4. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9. https://doi.org/10.1186/1475-2859-6-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hua ZS, Han YJ, Chen LX et al (2015) Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J 9:1280–1294. https://doi.org/10.1038/ismej.2014.212

    Article  CAS  PubMed  Google Scholar 

  6. Shu WS, Huang LN (2022) Microbial diversity in extreme environments. Nat Rev Microbiol 20:219–235

    Article  CAS  PubMed  Google Scholar 

  7. Rastogi G, Bhalla A, Adhikari A et al (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101:8798–8806. https://doi.org/10.1016/j.biortech.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  8. Zambare VP, Bhalla A, Muthukumarappan K et al (2011) Bioprocessing of agricultural residues to ethanol utilizing a cellulolytic extremophile. Extremophiles 15:611–618. https://doi.org/10.1007/s00792-011-0391-2

    Article  CAS  PubMed  Google Scholar 

  9. Okolie JA, Nanda S, Dalai AK, Kozinski JA (2021) Chemistry and specialty industrial applications of lignocellulosic biomass. Waste Biomass Valorization 12:2145–2169

    Article  CAS  Google Scholar 

  10. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353

    Article  PubMed  Google Scholar 

  11. Hatfield JL, Smith DD (2013) Food and agricultural waste: sources of carbon for ethanol production. Carbon Manag 4:203–213. https://doi.org/10.4155/cmt.13.13

    Article  CAS  Google Scholar 

  12. Rahman MS, Mondal MIH, Yeasmin MS et al (2020) Conversion of lignocellulosic corn agro-waste into cellulose derivative and its potential application as pharmaceutical excipient. Processes 8:711. https://doi.org/10.3390/PR8060711

    Article  CAS  Google Scholar 

  13. Sharma N, Kalra KL, Oberoi HS, Bansal S (2007) Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Ind J Microbiol 47:310–316. https://doi.org/10.1007/s12088-007-0057-z

    Article  CAS  Google Scholar 

  14. Babatola SS (2018) Global attributable burden of air diseases pollution. J Public Health Africa 9:813. https://doi.org/10.4081/jphia.2018.813

    Article  Google Scholar 

  15. Kumar V, Syal P, Satyanarayana T (2013) Highly thermo-halo-alkali-stable β-1,4-endoxylanase from a novel polyextremophilic strain of Bacillus halodurans. Bioprocess Biosyst Eng 36:555–565. https://doi.org/10.1007/s00449-012-0811-4

    Article  CAS  PubMed  Google Scholar 

  16. O’dea RM, Willie JA, Epps TH (2020) 100th Anniversary of macromolecular science viewpoint: polymers from lignocellulosic biomass. Current challenges and future opportunities. ACS Macro Lett 9:476–493. https://doi.org/10.1021/acsmacrolett.0c00024

    Article  CAS  PubMed  Google Scholar 

  17. Bhatia SK, Jagtap SS, Bedekar AA et al (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Bioresour Technol 300:122724

    Article  CAS  PubMed  Google Scholar 

  18. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78. https://doi.org/10.1016/j.biombioe.2012.03.026

    Article  CAS  Google Scholar 

  19. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenergy Res 3:82–92. https://doi.org/10.1007/s12155-009-9067-5

    Article  Google Scholar 

  20. Adams MWW, Kelly RM (1998) Finding and using hyperthermophilic enzymes. Trends Biotechnol 16:329–332. https://doi.org/10.1016/S0167-7799(98)01193-7

    Article  CAS  PubMed  Google Scholar 

  21. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ejaz U, Sohail M, Ghanemi A (2021) Cellulases: from bioactivity to a variety of industrial applications. Biomimetics 6:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Korsa G, Konwarh R, Masi C et al (2023) Microbial cellulase production and its potential application for textile industries. Ann Microbiol 73:12

    Article  Google Scholar 

  24. Ranjan R, Rai R, Bhatt SB, Dhar P (2023) Technological road map of Cellulase: a comprehensive outlook to structural, computational, and industrial applications. Biochem Eng J 198:109020

    Article  CAS  Google Scholar 

  25. Ilić N, Milić M, Beluhan S, Dimitrijević-Branković S (2023) Cellulases: from lignocellulosic biomass to improved production. Energies 16:3598

    Article  Google Scholar 

  26. Morana A, Esposito A, Maurelli L et al (2008) A novel thermoacidophilic cellulase from Alicyclobacillus acidocaldarius. Protein Pept Lett 15:1017–1021. https://doi.org/10.2174/092986608785849209

    Article  CAS  PubMed  Google Scholar 

  27. Ajeje SB, Hu Y, Song G et al (2021) Thermostable cellulases/xylanases from thermophilic and hyperthermophilic microorganisms: current perspective. Front Bioeng Biotechnol 9:794304

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singhal G, Bhagyawant SS, Srivastava N (2021) Cellulases through thermophilic microorganisms: production, characterization, and applications. In: Current status and future scope of microbial cellulases. pp 39–57

  29. Asmare B (2014) Biotechnological advances for animal nutrition and feed improvement. World J Agric Res 2:115–118. https://doi.org/10.12691/wjar-2-3-5

    Article  Google Scholar 

  30. Patel AK, Singhania RR, Sim SJ, Pandey A (2019) Thermostable cellulases: current status and perspectives. Bioresour Technol 279:385–392

    Article  CAS  PubMed  Google Scholar 

  31. Vaishnav N, Singh A, Adsul M et al (2018) Penicillium: the next emerging champion for cellulase production. Bioresour Technol Rep 2:131–140

    Article  Google Scholar 

  32. Mandels M, Reese ET (1957) Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol 73:269–278. https://doi.org/10.1128/jb.73.2.269-278.1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  34. Srinivasan R, Karaoz U, Volegova M et al (2015) Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PLoS ONE 10:e0117617. https://doi.org/10.1371/journal.pone.0117617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sakthivel M, Karthikeyan N, Jayaveny R, Palani P (2010) Optimization of culture conditions for the production of extracellular cellulase from Corynebacterium lipophiloflavum. J Ecobiotechnol 2:9. https://updatepublishing.com/journal/index.php/jebt/article/view/100

    Google Scholar 

  36. Obeng EM, Adam SNN, Budiman C et al (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4:16

    Article  Google Scholar 

  37. Irfan M, Safdar A, Syed Q, Nadeem M (2012) Selülaz aktivitesine sahip bakterilerin topraktan izolasyonu, deǧerlendirilmesi ve selülaz üretim ve aktivitesinin optimizasyonu. Turkish J Biochem 37:287–293. https://doi.org/10.5505/tjb.2012.09709

    Article  CAS  Google Scholar 

  38. Najar IN, Thakur N (2020) A systematic review of the genera Geobacillus and Parageobacillus: their evolution, current taxonomic status and major applications. Microbiol (UK) 166:800–816

    Article  CAS  Google Scholar 

  39. Sharma A, Tewari R, Soni SK (2015) Application of statistical approach for optimizing CMCase production by Bacillus tequilensis S28 strain via submerged fermentation using wheat bran as carbon source. World Acad Sci Eng Technol 9:76–86

    Google Scholar 

  40. Salah A, Ibrahim S, El-diwany AI (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1:473–478

    Google Scholar 

  41. Azadian F, Badoei-dalfard A, Namaki-Shoushtari A et al (2017) Production and characterization of an acido-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. J Genet Eng Biotechnol 15:187–196. https://doi.org/10.1016/j.jgeb.2016.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  42. Geraldi A, Azzahra A, Wafi DAI et al (2022) Isolation and characterization of thermophilic Bacillus subtilis subsp. inaquosorum CGR-1 from Cangar hot springs. J Bio-Molecule Res Eng 1:32–39. https://doi.org/10.20473/jbiome.v1i1.35860

    Article  Google Scholar 

  43. Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53:126–131. https://doi.org/10.1080/00031305.1999.10474445

    Article  Google Scholar 

  44. Ahmed SA, Abdella MAA, El-Sherbiny GM et al (2019) Application of one –factor- at-a-time and statistical designs to enhance α-amylase production by a newly isolate Bacillus subtilis strain-MK1. Biocatal Agric Biotechnol 22:101397. https://doi.org/10.1016/j.bcab.2019.101397

    Article  Google Scholar 

  45. Mishra R, Chandra R (2020) Optimization of culture parameters for α-glucosidase production from suspension culture of moss Hyophilla nymaniana (Fleish.) Menzel. J Genet Eng Biotechnol 18:82. https://doi.org/10.1186/s43141-020-00098-8

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rath BP, Das S, Das MPK, Thatoi H (2014) Optimization of extracellular chromate reductase production by Bacillus amyloliquefaciens (CSB 9) isolated from chromite mine environment. Biocatal Agric Biotechnol 3:35–41. https://doi.org/10.1016/j.bcab.2014.01.004

    Article  Google Scholar 

  47. Wheeler LC, Lim SA, Marqusee S, Harms MJ (2016) The thermostability and specificity of ancient proteins. Curr Opin Struct Biol 38:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thakkar A, Saraf M (2014) Application of statistically based experimental designs to optimize cellulase production and identification of gene. Nat Prod Bioprospect 4:341–351. https://doi.org/10.1007/s13659-014-0046-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shyaula M, Regmi S, Khadka D et al (2023) Characterization of thermostable cellulase from Bacillus licheniformis PANG L Isolated from the Himalayan Soil. Int J Microbiol 2023:3615757. https://doi.org/10.1155/2023/3615757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohammadi S, Tarrahimofrad H, Arjmand S et al (2022) Expression, characterization, and activity optimization of a novel cellulase from the thermophilic bacteria Cohnella sp. A01. Sci Rep 12:10301. https://doi.org/10.1038/s41598-022-14651-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Khadka S, Khadka D, Poudel RC et al (2022) Production optimization and biochemical characterization of cellulase from Geobacillus sp. KP43 Isolated from hot spring water of Nepal. Biomed Res Int 2022:6840409. https://doi.org/10.1155/2022/6840409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li W, Zhang WW, Yang MM, Chen YL (2008) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201. https://doi.org/10.1007/s12033-008-9079-y

    Article  CAS  PubMed  Google Scholar 

  53. Abou-Taleb KAA, Mashhoor WA, Nasr SA et al (2009) Nutritional and environmental factors affecting cellulase production by two strains of cellulolytic Bacilli. Aust J Basic Appl Sci 3:2429–2436

    CAS  Google Scholar 

  54. Irfan M, Mushtaq Q, Tabssum F et al (2017) Carboxymethyl cellulase production optimization from newly isolated thermophilic Bacillus subtilis K-18 for saccharification using response surface methodology. AMB Express 7:29. https://doi.org/10.1186/s13568-017-0331-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shajahan S, Moorthy IG, Sivakumar N, Selvakumar G (2017) Statistical modeling and optimization of cellulase production by Bacillus licheniformis NCIM 5556 isolated from the hot spring, Maharashtra, India. J King Saud Univ-Sci 29:302–310. https://doi.org/10.1016/j.jksus.2016.08.001

    Article  Google Scholar 

  56. Verma D, Satyanarayana T (2013) Production of cellulase-free xylanase by the recombinant Bacillus subtilis and its applicability in paper pulp bleaching. Biotechnol Prog 29:1441–1447. https://doi.org/10.1002/btpr.1826

    Article  CAS  PubMed  Google Scholar 

  57. Sorour AA, Ali SM, El-Naggar MY, Olama ZA (2020) Isolation and optimization of cellulase production by Aspergillus penicillioides 12 asz using experimental design. Ecol Environ Conserv 26:S109–S115

    Google Scholar 

  58. Ban N, Zhou Y, Ye Y, et al (2012) Plackett–Burman design for screening culture conditions in cellulase production by Penicillium decumbens and enzyme characterization. In: Advanced materials research. pp 5578–5585

  59. Techapun C, Sinsuwongwat S, Watanabe M et al (2002) Production of cellulase-free xylanase by a thermotolerant Streptomyces sp. grown on agricultural waste and media optimization using mixture design and Plackett–Burman experimental design methods. Biotechnol Lett 24:1437–1442. https://doi.org/10.1023/A:1019827321162

    Article  CAS  Google Scholar 

  60. Khusro A, Kaliyan BK, Al-Dhabi NA et al (2016) Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI. Electron J Biotechnol 22:16–25. https://doi.org/10.1016/j.ejbt.2016.04.002

    Article  Google Scholar 

  61. Liaqat F, Sözer Bahadır P, Elibol M, Eltem R (2018) Optimization of chitosanase production by Bacillus mojavensis EGE-B-5.2i. J Basic Microbiol 58:836–847. https://doi.org/10.1002/jobm.201800132

    Article  CAS  PubMed  Google Scholar 

  62. Tennalli GB, Garawadmath S, Sequeira L et al (2022) Media optimization for the production of alkaline protease by Bacillus cereus PW3A using response surface methodology. J Appl Biol Biotechnol 10:17–26. https://doi.org/10.7324/JABB.2022.100403

    Article  CAS  Google Scholar 

  63. Vanaja K, Rani RHS (2007) Design of experiments: concept and applications of Plackett Burman design. Clin Res Regul Aff 24:1–23

    Article  Google Scholar 

  64. Norsalwani TLT, Norulaini NAN (2012) Utilization of lignocellulosic wastes as a carbon source for the production of bacterial cellulases under solid state fermentation. Int J Environ Sci Dev 3:136–140. https://doi.org/10.7763/ijesd.2012.v3.203

    Article  CAS  Google Scholar 

  65. Akinyele HA, Taliat AAT, Enwerem GC et al (2020) Lignocellulosic waste degradation potential of some cellulolytic fungal strains isolated from putrid fruits. J Pure Appl Microbiol 14:2585–2593. https://doi.org/10.22207/JPAM.14.4.34

    Article  CAS  Google Scholar 

  66. Kumar Ramamoorthy N, Sambavi TR, Renganathan S (2019) A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochem 83:148–158. https://doi.org/10.1016/j.procbio.2019.05.006

    Article  CAS  Google Scholar 

  67. Ja’afar JN, Shitu A (2021) Utilization of Lignocellulosic agro-waste as an alternative carbon source for industrial enzyme production. In: Waste management, processing and valorisation. pp 221–233

  68. Xin F, Geng A (2010) Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl Biochem Biotechnol 162:295–306. https://doi.org/10.1007/s12010-009-8745-2

    Article  CAS  PubMed  Google Scholar 

  69. Devi MH, Munjam S (2022) Bioethanol production from rice straw and cellulose degradation using Aspergillus terreus and Trichoderma harzanium. Biosci Biotechnol Res Asia 19:699–711

    Article  Google Scholar 

  70. Mohanty A, Mankoti M, Rout PR et al (2022) Sustainable utilization of food waste for bioenergy production: a step towards circular bioeconomy. Int J Food Microbiol 365:109538. https://doi.org/10.1016/j.ijfoodmicro.2022.109538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

UGC-non-NET PhD fellowship given to Ms Meghna Arya and UGC-Senior Research Fellowship given to Ms Garima Chauhan is duly acknowledged. Scanning Electron Microscopy facility of USIC (BBAU) is duly acknowledged.

Funding

The authors declare that no fund or grant was received for the current research work.

Author information

Authors and Affiliations

Authors

Contributions

MA carried out isolation, enzyme assay and optimization studies. GC and TF assisted in sample collection and SEM experiments execution. MA and GC participated in phylogenetic analysis and manuscript preparation. DV and MS had conceptualized the experimental design, statistical analysis and overall supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Digvijay Verma or Monica Sharma.

Ethics declarations

Conflict of interests

The authors declare that they have no financial and non-financial competing interests.

Ethics Declaration

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, M., Chauhan, G., Fatima, T. et al. Statistical Modelling of Thermostable Cellulase Production Conditions of Thermophilic Geobacillus sp. TP-1 Isolated from Tapovan Hot Springs of the Garhwal Himalayan Mountain Ranges, India. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01258-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01258-x

Keywords

Navigation