Skip to main content
Log in

New contributions to a complex system of quadratic heat equations with a generalized kernels: global solutions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this work, we propose new contributions to a complex system of quadratic heat equations with a generalized kernel of the form: \(\partial _t z=\mathfrak {L}\,z+ \widetilde{z}^{2},\;\partial _t \widetilde{z}=\mathfrak {L}\,\widetilde{z}+ z^2,\;t>0,\) with initial conditions \(z_{0}=u_0+v_0,\;\widetilde{z}_{0}=\widetilde{u}_0+\widetilde{v}_0\), and \(\mathfrak {L}\) is a linear operator with \(e^{t\mathcal {L}}\) its semigroup having a generalized heat kernel G satisfying in particular \(G(t,x)= t^{-\frac{N}{d}} G(1,xt^{-1/d}),\,d>0,\, t>0\) and \(x\in \mathbb {R}^N.\) Under conditions on the parameters \(\sigma _{1},\,\widetilde{\sigma }_{1},\,\rho _{1},\,\) and \(\widetilde{\rho _{1}}\) we show results on global-in time solution for small data \(u_{0}(x)\sim c|x|^{-d\sigma _{1}},\,v_{0}(x)\sim c|x|^{-d\rho _{1}},\,\widetilde{u}_{0}(x)\sim c|x|^{-d\widetilde{\sigma }_{1}}\) and \(\widetilde{v}_{0}(x)\sim c|x|^{-d\widetilde{\rho }_{1}}\) as \(|x|\rightarrow \infty \), ( |c| is sufficiently small ). We investigate the global existence of solutions to the given system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study

References

  1. Brandolese, L., Karch, G.: Far field asymptotics of solutions to convection equation with anomalous diffusion. J. Evol. Equ. 8, 307–326 (2008)

    Article  MathSciNet  Google Scholar 

  2. Castillo, R., Loayza, M.: Global existence and blowup for a coupled parabolic system with time-weighted sources on a general domain. Z. Angew. Math. Phys. 70, 57 (2019). https://doi.org/10.1007/s00033-019-1103-5

    Article  MathSciNet  Google Scholar 

  3. Cazenave, T., Weissler, F.B.: Asymptotically self-semilar global solutions of the nonlinear Schrödinger and heat equations. Math. Z. 228, 83–120 (1998)

    Article  MathSciNet  Google Scholar 

  4. Chouichi, A., Otsmane, S., Tayachi, S.: Large time behavior of solutions for a complex-valued quadratic heat equation. Nonlinear Differ. Equ. Appl. 22, 1005–1045 (2015)

    Article  MathSciNet  Google Scholar 

  5. Duong, G.K.: A blowup solution of a complex semi-linear heat equation with an irrational power. J. Differ. Equ. 267, 4975–5048 (2019)

    Article  MathSciNet  Google Scholar 

  6. Duong, G.K.: Profile for the imaginary part of a blowup solution for a complex-valued semilinear heat equation. J. Funct. Anal 277, 1531–1579 (2019)

    Article  MathSciNet  Google Scholar 

  7. Egorov, Y.V., Galaktionov, V.A., Kondratiev, V.A., Pohazaev, S.I.: On the asymptotics of global solutions of higher-order semilinear parabolic equations in the supercritical range. C. R. Math. Acad. Sci. Paris 335, 805–810 (2002)

    Article  MathSciNet  Google Scholar 

  8. Egorov, Y.V., Galaktionov, V.A., Kondratiev, V.A., Pohazaev, S.I.: Global solutions of higher-order semilinear parabolic equations in the supercritical range. Adv. Differ. Equ. 9, 1009–1038 (2004)

    MathSciNet  Google Scholar 

  9. Elaiw, A.A., Tayachi, S.: Different asymptotic behavior of global solutions for a parabolic system with nonlinear gradient terms. Math. Anal. Appl. 387, 970–992 (2012)

    Article  MathSciNet  Google Scholar 

  10. Escobedo, M., Herrero, M.A.: Boundedness and blow up for a semilinear reaction-diffusion system. J. Differ. Equ. 89, 176–202 (1991)

    Article  MathSciNet  Google Scholar 

  11. Galaktionov, V.A., Kurdyumov, S.P., Samarskii, A.A.: On asymptotic “eigenfuctions’’ of the Cauchy problem for a nonlinear parabolic equation. Math. USSR Sbornik 54, 421–455 (1986)

    Article  Google Scholar 

  12. Gallay, T., Joly, R., Raugel, G.: Asymptotic self-similarity in diffusion equations with nonconstant radial limits at infinity. J. Dyn. Diff. Equat. (2020). https://doi.org/10.1007/s10884-020-09897-6

    Article  Google Scholar 

  13. Guo, J.-S., Ninomiya, H., Shimojo, M., Yanagida, E.: Convergence and blow-up of solutions for a complex-valued heat equation with a quadratic nonlinearity. Trans. Am. Math. Soc. 365, 2447–2467 (2013)

    Article  MathSciNet  Google Scholar 

  14. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, Springer, Berlin (2003)

    Book  Google Scholar 

  15. Ishige, K., Kawakami, T., Kobayashi, K.: Asymptotic for a nonlinear equation with a generalized heat kernel. J. Evol. Equ. 14, 749–777 (2014)

    Article  MathSciNet  Google Scholar 

  16. Ishige, K., Kawakami, T., Kobayashi, K.: Global solutions for a nonlinear integral equation with a generelized kernel. Discrete Contin. Dyn. Syst. Ser. A 7, 767–783 (2014)

    Google Scholar 

  17. Majdoub, M., Mliki, E.: Well-posedness for Hardy-Hénon parabolic equations with fractional Brownian noise. Anal. Math. Phys. 11, 20 (2021). https://doi.org/10.1007/s13324-020-00442-8

    Article  Google Scholar 

  18. Miao, C., Yuan, B., Zhang, B.: Well-posedness of the Cauchy problem for the fractional power dissipative equations. Nonlinear Anal. 68, 461–484 (2008)

    Article  MathSciNet  Google Scholar 

  19. Na, Y., Nie, Y., Zhou, X.: Asymptotic behavior of solutions to a class of coupled semi-linear parabolic systems with gradient terms. J. Nonlinear Sci. Appl. 10, 5813–5824 (2017)

    Article  MathSciNet  Google Scholar 

  20. Nouaili, N., Zaag, H.: Profile for simultaneously blowing up solution for a complex valued semi-linear heat equation. Commun. Partial Differ. Equ. 40, 1197–1217 (2015)

    Article  Google Scholar 

  21. Otsmane, S.: Asymptotically self-similar global solutions for a complex-valued quadratic heat equation with a generalized kernel. Bol. Soc. Mat. Mex. 27, 46 (2021). https://doi.org/10.1007/s40590-021-00354-y

    Article  MathSciNet  Google Scholar 

  22. Snoussi, S., Tayachi, S.: Asymptotic self-similar behavior of solutions for a semilinear parabolic system. Commun. Contemp. Math. 3, 363–392 (2001)

    Article  MathSciNet  Google Scholar 

  23. Snoussi, S., Tayachi, S., Weissler, F.B.: Asymptotically self-similar global solutions of a general semilinear heat equation. Math. Ann. 321, 131–155 (2001)

    Article  MathSciNet  Google Scholar 

  24. Snoussia, S., Tayachib, S.: Global existence, asymptotic behavior and self-similar solutions for a class of semi-linear parabolic systems. Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 48, 13–35 (2002)

    Article  Google Scholar 

  25. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princenton University Press, Princeton (1970)

    Google Scholar 

  26. Sun, F., Li, F., Jia, X.: Asymptotically self-similar global solutions for a higher-order semi-linear parabolic system. J. Part. Differ. Equ. 22, 282–298 (2009)

    Google Scholar 

  27. Vazquez, J.L.: Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. Ser. S 7, 857–885 (2014)

    MathSciNet  Google Scholar 

  28. Wu, G., Yaun, J.: Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces. J. Math. Anal. Appl. 340, 1326–1335 (2008)

    Article  MathSciNet  Google Scholar 

  29. Yamamoto, M.: Asymptotic expansion of solutions to the dissipative equation with fractional Laplacian. SIAM J. Math. Anal. 44, 3786–3805 (2012)

    Article  MathSciNet  Google Scholar 

  30. Zhong, T., Yongqiang, X.: Existence and nonexistence of global solutions for a semi-linear heat equation with fractional Laplacian. Acta Math. Sci. 32, 2203–2210 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their constructive criticism and suggestions

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Department of Informatics, University of Batna 2, Mostefa Ben Boulaid, Fesdis, Batna 05078, Algeria. Abdelaziz Mennouni: Department of Mathematics, LTM, University of Batna 2, Algeria

Corresponding author

Correspondence to Abdelaziz Mennouni.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the author.

Additional information

Communicated by Joachim Escher.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otsmane, S., Mennouni, A. New contributions to a complex system of quadratic heat equations with a generalized kernels: global solutions. Monatsh Math (2024). https://doi.org/10.1007/s00605-024-01955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00605-024-01955-1

Keywords

Mathematics Subject Classification

Navigation