Skip to main content
Log in

Features of Raman Scattering in Lead Sulfide and Lead Sulfide-Selenide Epitaxial Films

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Raman scattering spectra of 1–2 μm thick n-PbS(111) epitaxial films grown by molecular beam epitaxy on BaF2(111) substrates were obtained and analyzed. The spectra were recorded at a low excitation level of 0.36 mW/μm2, which did not cause photo- and thermal degradation of the films. It is shown that, in accordance with the symmetry selection rules, the bands in the spectra correspond to overtone or combination tones of phonon modes of PbS at special points of the Brillouin zone. The analysis of the bands of oxides and oxysulfates of lead, which can mask the bands of lead sulfide, was carried out. The obtained data were used in the analysis of the recorded Raman scattering spectra by epitaxial films of a ternary solid solution PbS0.5Se0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Yu. I. Ravich, B. A. Efimova, I. A. Smirnov. Metody issledovaniya poluprovodnikov v primenenii k khal’kogenidam svintsa PbTe, PbSe, PbS (Nauka, Moscow, 1968) (in Russian).

    Google Scholar 

  2. T. Fu. Sensors. Actuators B: Chemical, 140 (1), 116 (2009). https://doi.org/10.1016/j.snb.2009.03.075

    Article  Google Scholar 

  3. S. Kumar, Z. H. Khan, M. A. Majeed, K. M. Husain. Curr. Appl. Phys., 5, 561 (2005). https://doi.org/10.1016/j.snb.2009.03.075

    Article  ADS  Google Scholar 

  4. F. W. Wise. Acc. Chem. Res., 33, 773 (2000). https://doi.org/10.1021/ar970220q

    Article  Google Scholar 

  5. S. P. Zimin, E. S. Gorlachev. Nanostrukturirovannye khal’kogenidy svintsa (Izd. Yarosl. Gos. Univ., Yaroslavl, 2011) (in Russian).

    Google Scholar 

  6. N. Sukharevska, D. Bederak, V. M. Goossens, J. Momand, H. Duim, D. N. Dirin, M. V. Kovalenko, B. J. Kooi, M. A. Loi. ACS Appl. Mater. Interfaces, 13, 5195 (2021). https://doi.org/10.1021/acsami.0c18204

    Article  Google Scholar 

  7. T. Blachowicz, A. Ehrmann. Appl. Sci., 10, 1743 (2020). https://doi.org/10.3390/app10051743

    Article  Google Scholar 

  8. X. Zhang, Y. Chen, L. Lian, Z. Zhang, Y. Liu, L. Song, C. Geng, J. Zhang, S. Xu. Nano Res., 14 (3), 628 (2021). https://doi.org/10.1007/s12274-020-3081-5

    Article  ADS  Google Scholar 

  9. A. Abu-Hariri, A. K. Budniak, F. Horani, E. Lifshitz. RSC Adv., 11, 30560 (2021). https://doi.org/10.1039/d1ra04402h

    Article  ADS  Google Scholar 

  10. H. Cao, G. Wang, S. Zhang, X. Zhang. Nanotechnology, 17, 3280 (2006). https://doi.org/10.1088/0957-4484/17/13/034

    Article  ADS  Google Scholar 

  11. J.-H. Chen, C.-G. Chao, J.-C. Ou, T.-F. Liu. Surface Science, 601, 5142 (2007). https://doi.org/10.1016/j.susc.2007.04.228

    Article  ADS  Google Scholar 

  12. J.-P. Ge, J. Wang, H.-X. Zhang, X. Wang, Q. Peng, Y.‑D. Li. Chem. Eur. J., 11, 1889 (2005). https://doi.org/10.1002/chem.200400633

    Article  Google Scholar 

  13. G. D. Smith, S. Firth, R. J. H. Clark, M. Cardona. J. Appl. Phys., 92, 4375 (2002). https://doi.org/10.1063/1.1505670

    Article  ADS  Google Scholar 

  14. P. Yin, R. Zhang, Y. Zhang, L. Guo. International J. Modern Physics B., 24 (15), 3257 (2010). https://doi.org/10.1142/S0217979210066422

    Article  ADS  Google Scholar 

  15. A. V. Baranov, K. V. Bogdanov, E. V. Ushakova, S. A. Cherevkov, A. V. Fedorov, S. Tscharntke. Opt. Spectrosc., 109 (2), 268 (2010). https://doi.org/10.1134/S0030400X10080199

    Article  ADS  Google Scholar 

  16. Z. Peng, Y. Jiang, Y. Song, C. Wang, H. Zhang. Chem. Mater., 20 (9), 3153 (2008). https://doi.org/10.1021/cm703707v

    Article  Google Scholar 

  17. J. G. Shapter, M. H. Brooker, W. M. Skinner. International J. Mineral Processing, 60, 199 (2000). https://doi.org/10.1016/S0301-7516(00)00017-X

    Article  Google Scholar 

  18. G. Giudici, P. Ricci, P. Lattanzi, A. Anedda. American Mineralogist, 92, 518 (2007). https://doi.org/10.2138/am.2007.2181

    Article  ADS  Google Scholar 

  19. K. Stadelmann, A. Elizabeth, N. M. Sabanes, K. F. Domke. Vibrational Spectroscopy, 91, 157 (2016). https://doi.org/10.1016/j.vibspec.2016.08.008

    Article  Google Scholar 

  20. S. P. Zimin, E. S. Gorlachev, N. V. Gladysheva, V. V. Naumov, V. F. Gremenok, H. G. Seidi. Opt. Spectrosc., 115(1), 679 (2013). https://doi.org/10.1134/S0030400X1311026X

    Article  ADS  Google Scholar 

  21. Y. Batonneau, C. Brémard, J. Laureyns, J. C. Merlin. J. Raman Spectroscopy, 31 (12), 1113 (2000). https://doi.org/10.1002/1097-4555(200012)31:121113::aid-jrs6533.0.co;2-e

    Article  ADS  Google Scholar 

  22. M. O. Kuzivanov, S. P. Zimin, A. V. Fedorov, A. V. Baranov. Opt. Spectrosc., 119(6), 938 (2015). https://doi.org/10.1134/S0030400X15120140

    Article  ADS  Google Scholar 

  23. S. P. Zimin, E. S. Gorlachev, A. V. Baranov, S. A. Cherevkov, E. Abramof, P. H. O. Rappl. Opt. Spectrosc., 117 (5), 748 (2014). https://doi.org/10.1134/S0030400X14110241

    Article  ADS  Google Scholar 

  24. M. Labidi, H. Meradji, S. Ghemid., S. Labidi, F. El Haj Hassan. Modern Physics Letters, 25 (7), 473 (2011). https://doi.org/10.1142/S0217984911025729

    Article  ADS  Google Scholar 

  25. K. S. Upadhyaya, M. Yadav, G. K. Upadhyaya. Phys. Stat. Sol. B, 229, 1129 (2002). https://doi.org/10.1002/15213951(200202)229:3<1129::AID-SSB1129>3.0.CO;2-6

  26. T. D. Krauss, F. W. Wise. Phys. Rev. B, 55, 9860 (1977). https://doi.org/10.1103/PhysRevB.55.9860

    Article  ADS  Google Scholar 

  27. P. G. Etchegoin, M. Cardona, R. Lauck, R. J. H. Clark, J. Serrano, A. H. Romero. Phys. Stat. Sol. B, 245 (6), 1125 (2008). https://doi.org/10.1002/pssb.200743364

    Article  ADS  Google Scholar 

  28. O. Kilian, G. Allan, L. Wirtz. Phys. Rev. B, 80, 245208 (2009). https://doi.org/10.1103/PhysRevB.80.245208

  29. O. Semeniuk, A. Csik, S. Kökényesi, A. Reznik. J. Mater. Sci., 52 (13), 7937 (2017). https://doi.org/10.1007/s10853-017-0998-5

    Article  ADS  Google Scholar 

  30. G. Shao, G. Chen, J. Zuo, M. Gong, Q. Yang. Langmuir, 30, 7811 (2014). https://doi.org/10.1021/la501267f.1

    Article  Google Scholar 

  31. G. R. Wilkinson. Raman spectra of ionic, covalent, and metallic crystals. In: The Raman effect, V. 2: Applications, ed. A. Anderson. Chapter 5. (Marcel Dekker, New York, 1973).

Download references

Funding

This study was performed under the state assignment to the Valiev Institute of Physics and Technology of the Russian Academy of Sciences from the Ministry of Education and Science of the Russian Federation, project no. FFNN-2022-0017, and as part of the initiative research effort of the Demidov Yaroslavl State University. The authors wish to thank S.V. Vasil’ev and V.V. Osokin for providing the results of analysis of spinodal decomposition of PbS1–xSex films performed at the “Diagnostics of Micro- and Nanostructures” common use center with financial support from the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Zimin.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, A.V., Baranov, A.V. & Zimin, S.P. Features of Raman Scattering in Lead Sulfide and Lead Sulfide-Selenide Epitaxial Films. Opt. Spectrosc. 131, 975–979 (2023). https://doi.org/10.1134/S0030400X23100065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X23100065

Keywords:

Navigation