We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Prospects for the Use of Liquid Immersion Based on Germanium Nanoparticles in IR Spectroscopy

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Using the methods of nanosecond laser ablation in isopropyl alcohol and dry grinding of germanium, germanium nanoparticles were obtained for their possible application in liquid high-index immersion. Structural, chemical, and optical characterization of colloidal nanoparticles was carried out using scanning electron microscopy, IR spectroscopy, and energy-dispersive X-ray spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. V. Nadolinny, A. Komarovskikh, Y. Palyanov. Crystals, 7 (8), 237 (2017). https://doi.org/10.3390/cryst7080237

    Article  Google Scholar 

  2. A. Rifai, S. Houshyar, K. Fox. A review. Annals of 3D Printed Medicine, 1, 100002 (2021). https://doi.org/10.1016/j.stlm.2020.100002

  3. S. Catledge, V. Thomas, Y. Vohra. In: Diamond-Based Materials for Biomedical Applications, ed. by R. Narayan (Woodhead publishing series in biomaterials, 2013), p. 105. https://doi.org/10.1533/9780857093516.2.105

  4. P. Bergonzo, A. Brambilla, D. Tromson, C. Mer, B. Guizard, R. D. Marshall, F. Foulon. Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, 476 (3). 694 (2002). https://doi.org/10.1016/S0168-9002(01)01668-0

    Article  ADS  Google Scholar 

  5. J. Liu, G. Li. Research on the development of 3D printing construction industry based on diamond model. In: ICCREM 2018: Innovative Technology and Intelligent Construction (American Society of Civil Engineers, Reston, VA, 2018), p. 164.

    Google Scholar 

  6. Z. Shi, Q. Yuan, Y. Wang, K. Nishimura, G. Yang, B. Zhang, N. Jiang, H. Li. Materials, 14 (23), 7435 (2021). https://doi.org/10.3390/ma14237435

    Article  ADS  Google Scholar 

  7. E. D. Obraztsova, K. G. Korotushenko, S. M. Pimenov, V. G. Ralchenko, A. A. Smolin, V. I. Konov, E. N. Loubnin. Nanostructured Materials, 6 (5–8), 827 (1995).

    Article  Google Scholar 

  8. L. Bergman, R. J. Nemanich. J. Appl. Phys., 78 (11), 6709 (1995). https://doi.org/10.1063/1.360495

    Article  ADS  Google Scholar 

  9. T. Petit, L. Puskar. Diamond and Related Materials, 89, 52 (2018). https://doi.org/10.1016/j.diamond.2018.08.005

    Article  ADS  Google Scholar 

  10. J. Stiegler, J. Michler, E. Blank. Diamond and related materials, 8 (2–5), 651 (1999). https://doi.org/10.1016/S0925-9635(98)00272-6

    Article  ADS  Google Scholar 

  11. M. V. Kurushkin, V. A. Markov, A. V. Semencha, M. D. Mikhailov, A. S. Tverjanovich, A. L. Shakhmin, T. V. Larionova, V. D. Andreeva. Intern. J. Appl. Glass Science, 9 (1), 85 (2018). https://doi.org/10.1111/ijag.12279

    Article  Google Scholar 

  12. A. Semencha, M. G. Dronova, V. Klinkov, A. Osipov, J. Mistry. Key Engineering Materials, 822, 848 (2019). https://doi.org/10.4028/www.scientific.net/KEM.822.848

    Article  Google Scholar 

  13. R. Meyrowitz, E. S. Larsen. American Mineralogist: J. Earth and Planetary Materials, 36 (9–10), 746 (1951).

    Google Scholar 

  14. V. V. Afanasiev, A. G. Voloboy, A. V. Ignatenko. In: Sistemy proyektirovaniya, tekhnologicheskoy podgotovki proizvodstva i upravleniya etapami zhiznennogo tsikla promyshlennogo produkta (SAD/CAM/PDM-2015) (in Russian), ed. by A. V. Toloka (LLC “Analyst,” M., 2015), p. 151.

  15. D. Gerstenlauer, M. H. Keller, M. Arduini-Schuster, J. Manara, G. Steinborn. J. Quantitative Spectroscopy and Radiative Transfer, 135, 44 (2014). https://doi.org/10.1016/j.jqsrt.2013.11.007

    Article  ADS  Google Scholar 

  16. H. Qi, X. Zhang, M. Jiang, Q. Wang, D. Li. J. Appl. Spectrosc., 84 (4), 679 (2017). https://doi.org/10.1007/M0812-017-0529-9

    Article  ADS  Google Scholar 

  17. E. A. Vasiliev, V. I. Ivanov-Omsky, I. N. Bogush. ZhTF, 75 (6), 38 (2005) (in Russian).

    Google Scholar 

Download references

Funding

The research was supported financially by the Russian Science Foundation 21-79-30063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nastulyavichus.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastulyavichus, A.A., Khmelnitskii, R.A., Shelygina, S.N. et al. Prospects for the Use of Liquid Immersion Based on Germanium Nanoparticles in IR Spectroscopy. Opt. Spectrosc. 131, 1048–1052 (2023). https://doi.org/10.1134/S0030400X23100156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X23100156

Keywords:

Navigation