Skip to main content
Log in

Lattice Thermal Conductivity of Silicon and Germanium Core/Shell and Segmented Nanowires

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We investigated the phonon and thermal properties of the silicon- and germanium-nanowires, covered by SixGe1–x, plastic, diamond and SiO2 shells as well as Si-based segmented nanowires, consisting of segments of different sizes and/or materials. Acoustic phonon energies were calculated in the framework of the face-centered cubic cell model of the lattice vibrations, while thermal conductivity was investigated in the framework of Boltzmann transport equation approach within the relaxation time approximation. It was shown, that claddings with higher (lower) sound velocity strongly affect the phonon energy spectra and increase (decrease) the average phonon group velocity in core nanowire. It was demonstrated, that redistribution of the phonon modes in Si/Ge and Si/SiO2 segmented nanowires leads to a localization of the great amount of the phonon modes in nanowire segments, resulting in exclusion of such modes from the heat flow and suppression of the phonon thermal conduction (by a factor of 2–8) in comparison with generic silicon nanowires. Low values of the thermal conductivity of segmented nanowires make them prospective for thermoelectric and thermoinsulating applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. A.A. Balandin, ACS Nano 14, 5170 (2020).

    Article  Google Scholar 

  2. A. I. Cocemasov, C. I. Isacova, and D. L. Nika, Chin. Phys. B 27, 056301 (2018).

  3. H. Wang, G. Luo, Ch. Tan, Ch. Xiong, Z. Guo, Y. Yin, B. Yu, Y. Xiao, H. Hu, G. Liu, X. Tan, J. G. Noudem, and J. Jiang, ACS Appl. Mater. Interfaces 12, 31612 (2020).

    Article  Google Scholar 

  4. J. Ma, Small Sci. 3, 2200052 (2023).

  5. A. A. Balandin, J. Nanosci. Nanotechnol. 5, 1015 (2005).

    Article  Google Scholar 

  6. A. A. Balandin, E. P. Pokatilov, and D. L. Nika, J. Nanoelectron. Optoelectron. 2, 140 (2007).

    Google Scholar 

  7. A. A. Balandin and D. L. Nika, Mater. Today 15, 266 (2012).

    Article  Google Scholar 

  8. V. Goyal, S. Subrina, D. L. Nika, and A. A. Balandin, Appl. Phys. Lett. 97, 031904 (2010).

  9. G. Li, M. Yarali, A. Cocemasov, S. Baunack, D. L. Nika, V. M. Fomin, S. Singh, T. Gemming, F. Zhu, A. Mavrokefalos, and O.G. Schmidt, ACS Nano 11, 8215 (2017).

    Article  Google Scholar 

  10. A. I. Cocemasov, D. L. Nika, V. M. Fomin, D. Grimm, and O. G. Schmidt, Appl. Phys. Lett. A. 107, 011904 (2015).

  11. F. Kargar, B. Debnath, J.-P. Kakko, A. Säynätjoki, H. Lipsanen, D. L. Nika, R. K. Lake, and A. A. Balandin, Nat. Commun. 7, 13400 (2016).

    Article  ADS  Google Scholar 

  12. A. Balandin and K. L. Wang, J. Appl. Phys. 84, 6149 (1998).

    Article  ADS  Google Scholar 

  13. A. Balandin and K. L. Wang, Phys. Rev. B 58, 1544 (1998).

    Article  ADS  Google Scholar 

  14. M. Hu, J. V. Giapis, V. Goicochea, X. Zhang, D. Poulikakos, Nano Lett. 11, 618 (2011).

    Article  ADS  Google Scholar 

  15. M. Wingert, Z. C. Y. Cheng, E. Dechumphai, J. Moon, J.-H. Kim, J. Xiang, R. Chen, Nano Lett. 11, 5507 (2011).

    Article  ADS  Google Scholar 

  16. J. Zou and A. Balandin, J. Appl. Phys. 89, 2932 (2001).

    Article  ADS  Google Scholar 

  17. A. Khitun, A. Balandin, and K. L. Wang, Superlattices Microstruct. 26, 181 (1999).

    Article  ADS  Google Scholar 

  18. N. D. Zincenco, D. L. Nika, E. P. Pokatilov, and A. A. Balandin, J. Phys.: Conf. Ser. 92, 012086 (2007).

  19. A. Balandin, Nat. Mater. 10, 569 (2011).

    Article  ADS  Google Scholar 

  20. D. L. Nika, N. D. Zincenco, and E. P. Pokatilov, J. Nanoelectron. Optoelectron. 4, 180 (2009).

    Google Scholar 

  21. D. L. Nika, E. P. Pokatilov, and A. A. Balandin, Appl. Phys. Lett. 93, 173111 (2008).

  22. G. Pernot, M. Stoffel, I. Savic, et al., Nat. Mater. 9, 491 (2010).

    Article  ADS  Google Scholar 

  23. A. I. Hochbaum, R. Chen, R. D. Delgado, et al., Nature 451, 163 (2008).

    Article  ADS  Google Scholar 

  24. D. Crismari and D. L. Nika, J. Nanoelectron. Optoelectron. 7, 701 (2012).

    Google Scholar 

  25. D. L. Nika, A. I. Cocemasov, D. V. Crismari, and A. A. Balandin, Appl. Phys. Lett. A. 102, 213109 (2013).

  26. D. L. Nika, A. I. Cocemasov, C. I. Isacova, A. A. Balandin, V. M. Fomin, and O. G. Schmidt, Phys. Rev. B 85, 205439 (2012).

  27. D. L. Nika, E. P. Pokatilov, A. A. Balandin, A. M. Fomin, A. Rastelli, and O. G. Schmidt, Phys. Rev. 84, 165415 (2011).

  28. V. M. Fomin, D. L. Nika, A. S. Cocemasov, C. I. Isacova, and O. G. Schmidt, AIP Conf. Proc. 1449, 33 (2012).

    Article  ADS  Google Scholar 

  29. G. Leibfried, Handbuch der Physik, Vol. 7, Part 2 (Springer, Berlin, 1955).

    Google Scholar 

  30. D. L. Pokatilov, A. A. Nika, and A. A. Balandin, Phys. Rev. B 72, 113311 (2005).

  31. A. I. Cocemasov and D. L. Nika, J. Nanoelectron. Optoelectron. 7, 370 (2012).

    Google Scholar 

  32. H. Z. Song, K. Akahane, S. Lan, et al., Phys. Rev. 64, 085303 (2001).

  33. J. S. Wang, S. H. Yu, Y. R. Lin, et al., Nanotechnology 18, 015401 (2007).

  34. F. F. Schrey, L. Rebohle, T. Muller, et al., Phys. Rev. 72, 155310 (2005).

  35. T. V. Lippen, G. Notzel, G. J. Hamnus, et al., J. Cryst. Growth 278, 88 (2005).

    Article  ADS  Google Scholar 

  36. S. M. Rytov, Sov. Phys. - Acoust. 2, 68 (1956).

    MathSciNet  Google Scholar 

  37. L. Esaki and R. Tsu, IBM J. Res. 14, 61 (1970).

  38. O. L. Lazarenkova and A. A. Balandin, Phys. Rev. B 66, 245319 (2002).

  39. A. A. Balandin and O. L. Lazarenkova, Appl. Phys. Lett. A 82, 415 (2003).

    Article  ADS  Google Scholar 

  40. D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phys. Rev. B. 79, 155413 (2009).

  41. N. Mingo, Phys. Rev. B 68, 113308 (2003).

  42. D. L. Nika, N. D. Zincenco, and E. P. Pokatilov, J. Nanoelectron. Optoelectron. 4, 170 (2009).

    Google Scholar 

  43. A. Ward and D. A. Broido, Phys. Rev. B 81, 085205 (2010).

  44. L. Weber and E. Gmelin, Appl. Phys. A 53, 136 (1991).

    Article  ADS  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Education and Research of the Republic of Moldova (research subprogram no. 011208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Nika.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isacova, C.I., Zincenco, N.D., Boris, I.B. et al. Lattice Thermal Conductivity of Silicon and Germanium Core/Shell and Segmented Nanowires. Phys. Solid State 65, 89–105 (2023). https://doi.org/10.1134/S1063783424600456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783424600456

Keywords:

Navigation