Skip to main content
Log in

Supervariable approach to particle on a torus knot: a model for Hodge theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We analyze a particle constrained to move on a (pq)-torus knot within the framework of supervariable approach and deduce the BRST as well as anti-BRST symmetries. We also capture the nilpotency and absolute anti-commutativity of (anti-)BRST symmetries in this framework. Further, we show the existence of some novel symmetries in the system such as (anti-)co-BRST, bosonic, and ghost scale symmetries. We demonstrate that the conserved charges (corresponding to these symmetries) adhere to an algebra which is analogous to that of de Rham cohomological operators of differential geometry. As the charges (and the symmetries) find a physical realization with the differential geometrical operators, at the algebraic level, the present model presents a prototype for Hodge theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited.

Notes

  1. Ultimately, we shall take the limit \(\eta \rightarrow 0\) and \(\phi \rightarrow 0\), so that all the variables become a function of the evolution parameter t only.

References

  1. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton, 1992)

    Book  Google Scholar 

  2. D. Nemeschansky, C.R. Preitschopf, M. Weinstein, Ann. Phys. 183, 226 (1988)

    Article  ADS  Google Scholar 

  3. C. Becchi, A. Rouet, R. Stora, Phys. Lett. B 52, 344 (1974)

    Article  ADS  Google Scholar 

  4. C. Becchi, A. Rouet, R. Stora, Ann. Phys. (N. Y.) 98, 287 (1976)

    Article  ADS  Google Scholar 

  5. I. V. Tyutin, Lebedev Institute Preprint, Report No. FIAN-39 (1975) (Unpublished)

  6. L. Bonora, M. Tonin, Phys. Lett. B 98, 48 (1981)

    Article  ADS  Google Scholar 

  7. L. Bonora, P. Pasti, M. Tonin, Nouvo Cimento A 63, 353 (1981)

    Article  ADS  Google Scholar 

  8. R. Delbourgo, P.D. Jarvis, J. Phys. A Math. Gen. 15, 611 (1982)

    Article  ADS  Google Scholar 

  9. S. Gupta, R. Kumar, Int. J. Mod. Phys. A 31, 1650173 (2016)

    Article  ADS  Google Scholar 

  10. R. Kumar, A. Shukla, Adv. High Energy Phys. 2018, 7381387 (2018)

    Google Scholar 

  11. A. Pradeep, S. Anjali, B.M. Nair, S. Gupta, Commun. Theor. Phys. 72, 105205 (2020)

    Article  ADS  Google Scholar 

  12. S.D. Joglekar, B.P. Mandal, Z. Phys. C 70, 673 (1996)

    Article  MathSciNet  Google Scholar 

  13. C.C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots (American Mathematical Society, Providence, 2004)

    Google Scholar 

  14. E. Witten, Commun. Math. Phys. 121, 351 (1989)

    Article  ADS  Google Scholar 

  15. L.D. Faddeev, A.J. Niemi, Nature 387, 58 (1997)

    Article  ADS  Google Scholar 

  16. G.G. Liu, Z. Gao, Q. Wang et al., Nature 609, 925 (2022)

    Article  ADS  Google Scholar 

  17. C. Rovelli, L. Smolin, Phys. Rev. Lett. 61, 1155 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. V.V. Sreedhar, Ann. Phys. 359, 20 (2015)

    Article  ADS  Google Scholar 

  19. V.K. Pandey, B.P. Mandal, EPL 119, 31003 (2017)

    Article  ADS  Google Scholar 

  20. P. Das, S. Ghosh, Found. Phys. 46, 1649 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Anjali, S. Gupta, Eur. Phys. J. Plus 137, 511 (2022)

    Article  Google Scholar 

  22. J. Ananias Neto, C. Neves, W. Oliveira, Phys. Rev. D 63, 085018 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  23. S.A. Nejad, M. Dehghani, M. Monemzadeh, JHEP 01, 017 (2018)

    Article  ADS  Google Scholar 

  24. R.P. Malik, Int. J. Mod. Phys. A 22, 3521 (2007)

    Article  ADS  Google Scholar 

  25. S. Gupta, R.P. Malik, Eur. Phys. J. C 58, 517 (2008)

    Article  ADS  Google Scholar 

  26. S. Gupta, R.P. Malik, Eur. Phys. J. C 68, 325 (2010)

    Article  ADS  Google Scholar 

  27. T. Eguchi, P.B. Gilkey, A. Hanson, Phys. Rep. 66, 213 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

We declare that all the authors have contributed equally to this paper.

Corresponding author

Correspondence to Saurabh Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S, A., Gupta, S. Supervariable approach to particle on a torus knot: a model for Hodge theory. Eur. Phys. J. Plus 139, 304 (2024). https://doi.org/10.1140/epjp/s13360-024-05074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05074-6

Navigation