Skip to main content
Log in

The observation of hyperradiance accompanied by enhanced entanglement in a hybrid optomechanical system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have theoretically investigated an optomechanical system and presented the scenario of significantly enhanced bipartite photon–phonon entanglement for two qubits coupled to the single mode of the cavity. The results are compared with the one qubit case for reference. The tripartite atom–photon–phonon interaction is considered as only three-body resonant interaction, while the two-body actions are ignored under some potential approximations. Furthermore, we have studied the phenomenon of hyperradiance in which the well-known Dicke superradiant (\(N^2\) scaling law) can be surpassed due to the inter-atomic correlations. Jointly, a parameter regime is explored to observe the entanglement of photon–phonon pairs and their hyperradiance simultaneously. As it is important to show that the generation of photons and phonons is antibunched, the equal time second-order correlation function \(g^{(2)}(0)\) is characterized as witness. This system can be realized in Circuit Cavity Quantum Electrodynamics (CCQED) in which the direct coupling of the atom and mechanical resonator is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

As all data have been presented in the main text graphically, therefore this manuscript has no associated data information.

References

  1. S. Barrett, K. Hammerer, S. Harrison, T.E. Northup, T.J. Osborne, Simulating quantum fields with cavity QED. Phys. Rev. Lett. 110, 090501 (2013)

    Article  ADS  Google Scholar 

  2. A. Majumdar, M. Bajcsy, J. Vučković, Probing the ladder of dressed states and nonclassical light generation in quantum-dot–cavity QED. Phys. Rev. A 85, 041801 (2012)

    Article  ADS  Google Scholar 

  3. I.J. Luxmoore, R. Toro, O.D. Pozo-Zamudio, N.A. Wasley, E.A. Chekhovich, A.M. Sanchez, R. Beanland, A.M. Fox, M.S. Skolnick, H.Y. Liu et al., III–V quantum light source and cavity-QED on silicon. Sci. Rep. 3, 1239 (2013)

    Article  ADS  Google Scholar 

  4. S.K. Singh, Quantum dynamics and nonclassical photon statistics of coherently driven Raman transition in bimodal cavity. J. Mod. Opt. 66, 562 (2019)

    Article  ADS  Google Scholar 

  5. Z. Haider, S. Qamar, M. Irfan, Multiphoton blockade and antibunching in an optical cavity coupled with dipole-dipole-interacting \(\lambda \)-type atoms. Phys. Rev. A 107, 043702 (2023)

    Article  ADS  Google Scholar 

  6. K. Hou, C. Zhu, Y. Yang, G. Agarwal, Interfering pathways for photon blockade in cavity QED with one and two qubits. Phys. Rev. A 100, 063817 (2019)

    Article  ADS  Google Scholar 

  7. S. Singh, J.-X. Peng, M. Asjad, M. Mazaheri, Entanglement and coherence in a hybrid Laguerre–Gaussian rotating cavity optomechanical system with two-level atoms. J. Phys. B Atomic Mol. Opt. Phys. 54, 215502 (2021)

    Article  ADS  Google Scholar 

  8. X. Liang, Z. Duan, Q. Guo, S. Guan, M. Xie, C. Liu, Photon blockade in a bimode nonlinear nanocavity embedded with a quantum dot. Phys. Rev. A 102, 053713 (2020)

    Article  ADS  Google Scholar 

  9. L.-L. Nian, B. Zheng, J.-T. Lü, Electrically driven photon statistics engineering in quantum-dot circuit quantum electrodynamics. Phys. Rev. B 107, L241405 (2023)

    Article  ADS  Google Scholar 

  10. D.M. Lukin, M.A. Guidry, J. Yang, M. Ghezellou, S.D. Mishra, H. Abe, T. Ohshima, J. Ul-Hassan, J. Vučković, Two-emitter multimode cavity quantum electrodynamics in thin-film silicon carbide photonics. Phys. Rev. X 13, 011005 (2023)

    Google Scholar 

  11. J. Yang, M.A. Guidry, D.M. Lukin, K. Yang, J. Vučković, Inverse-designed silicon carbide quantum and nonlinear photonics. Light Sci. Appl. 12, 201 (2023)

    Article  ADS  Google Scholar 

  12. A. Imamoglu, H. Schmidt, G. Woods, M. Deutsch, Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  13. L. Zhang, C. Silberhorn, I.A. Walmsley, Secure quantum key distribution using continuous variables of single photons. Phys. Rev. Lett. 100, 110504 (2008)

    Article  ADS  Google Scholar 

  14. S. Singh, M. Mazaheri, J.-X. Peng, A. Sohail, M. Khalid, M. Asjad, Enhanced weak force sensing based on atom-based coherent quantum noise cancellation in a hybrid cavity optomechanical system. Front. Phys. 11, 245 (2023)

    Article  Google Scholar 

  15. X.-L. Wang, X.-D. Cai, Z.-E. Su, M.-C. Chen, D. Wu, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)

    Article  ADS  Google Scholar 

  16. M.-A. Lemonde, N. Didier, A.A. Clerk, Nonlinear interaction effects in a strongly driven optomechanical cavity. Phys. Rev. Lett. 111, 053602 (2013)

    Article  ADS  Google Scholar 

  17. K. Stannigel, P. Komar, S. Habraken, S. Bennett, M.D. Lukin, P. Zoller, P. Rabl, Optomechanical quantum information processing with photons and phonons. Phys. Rev. Lett. 109, 013603 (2012)

    Article  ADS  Google Scholar 

  18. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  19. W. Shao, J. Li, L.-L. Wang, Frequency conversion in a hybrid cavity-optomechanical system. Phys. Rev. A 107, 063505 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Singh, M. Asjad, C.R. Ooi, Tunable optical response in a hybrid quadratic optomechanical system coupled with single semiconductor quantum well. Quantum Inf. Process. 21, 47 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Cao, W.-X. Cui, X. Yi, H.-F. Wang, Controllable photon-phonon conversion via the topologically protected edge channel in an optomechanical lattice. Phys. Rev. A 103, 023504 (2021)

    Article  ADS  Google Scholar 

  22. D. Vitali, S. Gigan, A. Ferreira, H. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  23. M.J. Hartmann, M.B. Plenio, Steady state entanglement in the mechanical vibrations of two dielectric membranes. Phys. Rev. Lett. 101, 200503 (2008)

    Article  ADS  Google Scholar 

  24. K. Borkje, A. Nunnenkamp, S. Girvin, Proposal for entangling remote micromechanical oscillators via optical measurements. Phys. Rev. Lett. 107, 123601 (2011)

    Article  ADS  Google Scholar 

  25. S. Barzanjeh, M. Abdi, G.J. Milburn, P. Tombesi, D. Vitali, Reversible optical-to-microwave quantum interface. Phys. Rev. Lett. 109, 130503 (2012)

    Article  ADS  Google Scholar 

  26. Y.-D. Wang, A.A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  27. L. Tian, Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett. 108, 153604 (2012)

    Article  ADS  Google Scholar 

  28. T. Palomaki, J. Teufel, R. Simmonds, K.W. Lehnert, Entangling mechanical motion with microwave fields. Science 342, 710 (2013)

    Article  ADS  Google Scholar 

  29. U. Akram, W. Munro, K. Nemoto, G. Milburn, Photon-phonon entanglement in coupled optomechanical arrays. Phys. Rev. A 86, 042306 (2012)

    Article  ADS  Google Scholar 

  30. A. Lakhfif, J. El Qars, M. Nassik, Controlling photon-phonon entanglement in a three-mode optomechanical system. Eur. Phys. J. D 75, 189 (2021)

    Article  ADS  Google Scholar 

  31. X.-W. Xu, H.-Q. Shi, J.-Q. Liao, A.-X. Chen, Generation of single entangled photon-phonon pairs via an atom–photon–phonon interaction. Phys. Rev. A 100, 053802 (2019)

    Article  ADS  Google Scholar 

  32. M. Amazioug, B. Maroufi, M. Daoud, Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Inf. Process. 19, 1 (2020)

    Article  MathSciNet  Google Scholar 

  33. K. Araya-Sossa, M. Orszag, Generation of entanglement via squeezing on a tripartite-optomechanical system. Phys. Rev. A 108, 012432 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Dekorsy, G.C. Cho, H. Kurz, Coherent Phonons in Condensed Media, Light Scattering in Solids VIII: Fullerenes, Semiconductor Surfaces, Coherent Phonons, vol. 169 (2006)

  35. F. Benatti, M. Esposito, D. Fausti, R. Floreanini, K. Titimbo, K. Zimmermann, Generation and detection of squeezed phonons in lattice dynamics by ultrafast optical excitations. New J. Phys. 19, 023032 (2017)

    Article  ADS  Google Scholar 

  36. P. Grünunwald, S. Singh, W. Vogel, Raman-assisted Rabi resonances in two-mode cavity QED. Phys. Rev. A 83, 063806 (2011)

    Article  ADS  Google Scholar 

  37. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

  38. M. Gross, S. Haroche, Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301 (1982)

    Article  ADS  Google Scholar 

  39. M.-O. Pleinert, J. von Zanthier, G.S. Agarwal, Hyperradiance from collective behavior of coherently driven atoms. Optica 4, 779 (2017)

    Article  ADS  Google Scholar 

  40. J. Li, C. Zhu, Y. Yang, Squeezed light generated with hyperradiance without nonlinearity. Opt. Lett. 47, 3439 (2022)

    Article  ADS  Google Scholar 

  41. J. Aasi, J. Abadie, B. Abbott, R. Abbott, T. Abbott, M. Abernathy, C. Adams, T. Adams, P. Addesso, R. Adhikari et al., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 7, 613 (2013)

    Article  ADS  Google Scholar 

  42. H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutsky, H. Vahlbruch, First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110, 181101 (2013)

    Article  ADS  Google Scholar 

  43. J. Han, J. Kim, S.-H. Oh, G. Son, J. Ha, K. An, Hyperradiance by a stream of phase-correlated atomic dipole pairs traversing a high-q cavity. Sci. Rep. 11, 11256 (2021)

    Article  ADS  Google Scholar 

  44. J. Xu, S. Chang, Y. Yang, S. Zhu, G. Agarwal, Hyperradiance accompanied by nonclassicality. Phys. Rev. A 96, 013839 (2017)

    Article  ADS  Google Scholar 

  45. R. Namiki, Photonic families of non-gaussian entangled states and entanglement criteria for continuous-variable systems. Phys. Rev. A 85, 062307 (2012)

    Article  ADS  Google Scholar 

  46. J.-M. Pirkkalainen, S. Cho, F. Massel, J. Tuorila, T. Heikkilä, P. Hakonen, M. Sillanpää, Cavity optomechanics mediated by a quantum two-level system. Nat. Commun. 6, 6981 (2015)

    Article  ADS  Google Scholar 

  47. T.T. Heikkilä, F. Massel, J. Tuorila, R. Khan, M.A. Sillanpää, Enhancing optomechanical coupling via the Josephson effect. Phys. Rev. Lett. 112, 203603 (2014)

    Article  ADS  Google Scholar 

  48. J.R. Johansson, P.D. Nation, F. Nori, QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760 (2012)

    Article  ADS  Google Scholar 

  49. M. Amazioug, M. Daoud, S. Singh, M. Asjad, Strong photon antibunching effect in a double-cavity optomechanical system with intracavity squeezed light. Quantum Inf. Process. 22, 301 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  50. S.K. Singh, Optical feedback-induced dynamics and nonclassical photon statistics of semiconductor microcavity laser. Appl. Phys. B 127, 90 (2021)

    Article  ADS  Google Scholar 

  51. T. Kipf, G. Agarwal, Superradiance and collective gain in multimode optomechanics. Phys. Rev. A 90, 053808 (2014)

    Article  ADS  Google Scholar 

  52. Y. Han, L. Xue, J. Zhang, Superradiance and collective gain in the atom-assisted multimode optomechanical system. Int. J. Theor. Phys. 58, 992 (2019)

    Article  Google Scholar 

  53. M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed quantum states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996). https://doi.org/10.1016/s0375-9601(96)00706-2

  54. A. Peres, Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  55. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  56. H. Shapourian, K. Shiozaki, S. Ryu, Partial time9 reversal transformation and entanglement negativity in fermionic systems. Phys. Rev. B 95, 165101 (2017)

    Article  ADS  Google Scholar 

  57. M.B. Plenio, Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  58. A. Vesperini, G. Bel-Hadj-Aissa, R. Franzosi, Entanglement and quantum correlation measures for quantum multipartite mixed states. Sci. Rep. 13, 2852 (2023)

    Article  ADS  Google Scholar 

  59. Z. Xi, Y. Li, H. Fan, Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  60. G. Adesso, T.R. Bromley, M. Cianciaruso, Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Singh, C.R. Ooi, Quantum correlations of quadratic optomechanical oscillator. JOSA B 31, 2390 (2014)

    Article  ADS  Google Scholar 

  62. J.-M. Mol, L. Esguerra, M. Meister, D.E. Bruschi, A.W. Schell, J. Wolters, L. Wörner, Quantum memories for fundamental science in space. Quantum Sci. Technol. 8, 024006 (2023)

    Article  ADS  Google Scholar 

  63. P. Horodecki, M. Horodecki, R. Horodecki, Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeshan Haider.

Appendices

Appendix 1: Definition of basis states for one-atom and two-atoms system

The collective basis states in 1-photon manifold for one-atom system are \(| g00 \rangle \), \(| g10 \rangle \), \(| g01 \rangle \), and \(| 00 \rangle _{\pm }\). However, for the two-atoms system, these basis states are defined as \(| gg00 \rangle \), \(| gg10 \rangle \), \(| gg01 \rangle \), \(| gg11 \rangle \), and \(| \pm 00 \rangle \) The entangled states are defined as:

$$\begin{aligned} | 00 \rangle _{\pm }=\frac{| g11 \rangle \pm | e00 \rangle }{\sqrt{2}}, \end{aligned}$$
(11)

and

$$\begin{aligned} | \pm 00 \rangle =\frac{| ge00 \rangle \pm | eg00 \rangle }{\sqrt{2}} \end{aligned}$$
(12)

Appendix 2: Eigenvalues and Eigenstates of one-atom and two-atom systems

On diagonalizing the Hamiltonian presented in the main text for both the case of one-atom and two-atom system, the eigenvalues and their corresponding eigenfunction are presented in Tables 1 and 2, respectively. The dressed state diagram in Fig. 2a is constructed based on these eigenstates.

Table 1 One-atom system
Table 2 Two-atom system

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, Z., Altaf, M., Nasreen, T. et al. The observation of hyperradiance accompanied by enhanced entanglement in a hybrid optomechanical system. Eur. Phys. J. Plus 139, 303 (2024). https://doi.org/10.1140/epjp/s13360-024-05073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05073-7

Navigation