Skip to main content
Log in

Cytokinin Oxidase/Dehydrogenase as an Important Target for Increasing Plant Productivity

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The review examines the main stages of cytokinin biosynthesis and metabolism with an emphasis on the important role of cytokinin oxidase/dehydrogenase (CKO/CKX) in cytokinin degradation. In this context, arguments are made for the crucial importance of this enzyme in maintaining a balanced level of cytokinins in plants. The role of CKX genes encoding cytokinin oxidase/dehydrogenase in determining plant resistance to abiotic stress factors and their yield was analyzed. The molecular genetic ways of regulating the activity of CKX genes are characterized. The results of research on the regulation of CKO/CKX activity in increasing the resistance to abiotic stress and crop yield are summarized and the biotechnological ways of realizing such opportunities are described. Prospects for finding substances that inhibit CKO/CKX activity to create preparations for agriculture are outlined separately. Prospective chemical inhibitors of CKO/CKX and their effects on cultivated plants are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akhtar, S.S., Mekureyaw, M.F., Pandey, C., and Roitsch, T., Role of cytokinins for interactions of plants with microbial pathogens and pest insects, Front. Plant Sci., vol. 10, p. 1777. https://doi.org/10.3389/fpls.2019.01777

  2. Andreas, P., Kisiala, A., Emery, R.J.N., et al., Cytokinins are abundant and widespread among insect species, Plants, 2020, vol. 9, p. 208. https://doi.org/10.3390/plants9020208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aremu, A.O., Masondo, N.A., Sunmonu, T.O., et al., A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaCl-stressed tomato plants, Planta, 2014, vol. 240, pp. 877–889. https://doi.org/10.1007/s00425-014-2126-y

    Article  CAS  PubMed  Google Scholar 

  4. Arkhipov, D.V., Lomin, S.N., Myakushina, Y.A., Savelieva, E.M., Osolodkin, D.I., and Romanov, G.A., Modeling of protein–protein interactions in cytokinin signal transduction, Int. J. Mol. Sci., 2019, vol. 20, pp. 2096–2118. https://doi.org/10.3390/ijms20092096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Artner, C. and Benkova, E., Ethylene and cytokinin: partners in root growth regulation, Mol. Plant, 2019, vol. 12, pp. 1312–1314. https://doi.org/10.1016/j.molp.2019.09.003

    Article  CAS  PubMed  Google Scholar 

  6. Ashikari, M., Sakakibara, H., Lin, S., et al., Cytokinin oxidase regulates rice grain production, Science, 2005, vol. 309, pp. 741–745. https://doi.org/10.1126/science.1113373

    Article  CAS  PubMed  Google Scholar 

  7. Astot, C., Dolezal, K., Nordstrom, A., et al., An alternative cytokinin biosynthesis pathway, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 14778–14783. https://doi.org/10.1073/pnas.260504097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bae, E., Bingman, C.A., Bitto, E., et al., Crystal structure of Arabidopsis thaliana cytokinin dehydrogenase, Proteins: Struct. Funct. Bioinf., 2007, vol. 70, pp. 303–306. https://doi.org/10.1002/prot.21678

    Article  CAS  Google Scholar 

  9. Bartrina, I., Otto, E., Strnad, M., et al., Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus, seed yield in Arabidopsis thaliana, Plant Cell, 2011, vol. 23, pp. 69–80. https://doi.org/10.1105/tpc.110.079079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bilyeu, K.D., Cole, J.L., Esparza, T.J., et al., Molecular and biochemical characterization of a cytokinin oxidase from maize, Plant Physiol., 2001, vol. 125, pp. 378–386. https://doi.org/10.1104/pp.125.1.378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blume, R., Yemets, A., Korkhovyi, V., Radchuk, V., et al., Genome-wide identification and analysis of the cytokinin oxidase/dehydrogenase (ckx) gene family in finger millet (Eleusine coracana), Front. Genet., 2022, vol. 13, p. 963789. https://doi.org/10.3389/fgene.2022.963789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brugière, N., Shuping, J., Hanke, S., et al., Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress, Plant Physiol., 2003, vol. 132, pp. 1228–1240. https://doi.org/10.1104/pp.102.017707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brugière, N., Bohn, J., Humbert, S., et al., A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development, Plant Mol. Biol., 2008, vol. 67, pp. 215–229. https://doi.org/10.1007/s11103-008-9312-x

    Article  CAS  PubMed  Google Scholar 

  14. Chen, L., Zhao, J., Song, J., and Jameson, P.E., Cytokinin dehydrogenase: A genetic target for yield improvement in wheat, Plant Biotechnol. J., 2020, vol. 18, pp. 614–630. https://doi.org/10.1111/pbi.13305

    Article  CAS  PubMed  Google Scholar 

  15. Czajkowska, B.I., Finlay, C.M., Jones, G., and Brown, T.A., Diversity of a cytokinin dehydrogenase gene in wild and cultivated barley, PLoS One, 2019, vol. 14, p. e0225899. https://doi.org/10.1371/journal.pone.225899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dabravolski, S.A. and Isayenkov, S.V., Evolution of the cytokinin dehydrogenase (CKX) domain. J. Mol. Evol., 2021, vol. 89, pp. 665–677. https://doi.org/10.1007/s00239-021-10035-z

    Article  CAS  PubMed  Google Scholar 

  17. Debi, B.R., Taketa, S., and Ichii, M., Cytokinin inhibits lateral root initiation but stimulates lateral root elongation in rice (Oryza sativa), J. Plant Physiol., 2005, vol. 162, no. 5, pp. 507–515. https://doi.org/10.1016/j.jplph.2004.08.007

    Article  CAS  Google Scholar 

  18. Frébort, I., Šebela, M., Galuszka, P., et al., Cytokinin oxidase/cytokinin dehydrogenase assay: Optimized procedures and applications, Anal. Biochem., 2002, vol. 306, pp. 1–7. https://doi.org/10.1006/abio.2002.5670

    Article  CAS  PubMed  Google Scholar 

  19. Frébort, I., Kowalska, M., Hluska, T., et al., Evolution of cytokinin biosynthesis and degradation, J. Exp. Bot., 2011, vol. 62, pp. 2431–2452. https://doi.org/10.1093/jxb/err004

    Article  CAS  PubMed  Google Scholar 

  20. Frébortová, J., Galuszka, P., Werner, T., et al., Functional expression and purification of cytokinin dehydrogenase from Arabidopsis thaliana (AtCKX2) in Saccharomyces cerevisiae, Biol. Plant., 2007, vol. 51, pp. 673–682. https://doi.org/10.1007/s10535-007-0141-6

    Article  Google Scholar 

  21. Galuszka, P., Frébort, I., Šebela, M., et al., Cytokinin oxidase or dehydrogenease? Mechanism of cytokinin degradation in cereals, Eur. J. Biochem., 2001, vol. 268, pp. 450–461. https://doi.org/10.1046/j.1432-1033.2001.01910.x

    Article  CAS  PubMed  Google Scholar 

  22. Galuszka, P., Popelková, H., Werner, T., et al., Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L., J. Plant Growth Regul., 2007, vol. 26, pp. 255–267. https://doi.org/10.1007/s00344-007-9008-5

    Article  CAS  Google Scholar 

  23. Gasparis, S., Przyborowski, M., Kała, M., and Nadolska-Orczyk, A., Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-Guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology, Cells, 2019, vol. 8, p. 782. https://doi.org/10.3390/cells8080782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gruhn, N. and Heyl, A., Updates on the model and the evolution of cytokinin signaling, Curr. Opin. Plant Biol., 2013, vol. 16, pp. 569–574. https://doi.org/10.1016/j.pbi.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  25. Hinsch, J., Vrabka, J., Oeser, B., et al., De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea, Environ. Microbiol., 2015, vol. 17, pp. 2935–2951. https://doi.org/10.1111/1462-2920.12838

    Article  CAS  PubMed  Google Scholar 

  26. Holubová, K., Hensel, G., Vojta, P., et al., Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches, Front. Plant Sci., 2018, vol. 871, p. 1676. https://doi.org/10.3389/fpls.2018.01676

    Article  Google Scholar 

  27. Hwang, I. and Sheen, J., Two-component circuitry in Arabidopsis cytokinin signal transduction, Nature, 2001, vol. 413, pp. 383–389. https://doi.org/10.1038/35096500

    Article  CAS  PubMed  Google Scholar 

  28. Hwang, I., Sheen, J., and Müller, B., Cytokinin signaling networks, Annu. Rev. Plant Biol., 2012, vol. 63, pp. 353–380. https://doi.org/10.1146/annurev-arplant-042811-105503

    Article  CAS  PubMed  Google Scholar 

  29. Jabłoński, B., Ogonowska, H., Szala, K., et al., Silencing of TaCKX1 mediates expression of other TaCKX genes to increase yield parameters in wheat, Int. J. Mol. Sci., 2020, vol. 21, p. 4809. https://doi.org/10.3390/ijms21134809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jabłoński, B., Szala, K., Przyborowski, M., Bajguz, A., Chmur, M., Gasparis, S., Orczyk, W., and Nadolska-Orczyk, A., TaCKX2.2 genes coordinate expression of other TaCKX family members, regulate phytohormone content and yield-related traits of wheat, Int. J. Mol. Sci., 2021, vol. 16, no. 8, p. 4142. https://doi.org/10.3390/ijms22084142

    Article  CAS  Google Scholar 

  31. Jones, R.J. and Schreiber, B.M.N., Role and function of cytokinin oxidase in plants, Plant Growth Regul., 1997, vol. 23, pp. 123–134. https://doi.org/10.1023/A:1005913311266

    Article  CAS  Google Scholar 

  32. Kakimoto, T., Biosynthesis of cytokinins, J. Plant Res., 2003, vol. 116, pp. 233–239. https://doi.org/10.1007/s10265-003-0095-5

    Article  CAS  PubMed  Google Scholar 

  33. Khablak, S.G. and Abdullaeva, Y.A., Features of the structure and development of root systems in plants of mutant lines ahk2-5 and ahk3-7 Arabidopsis thaliana (L.) Heynh, Bull. Odessa Natl. Univ., Ser. Biol., 2012, vol. 17, pp. 58–68.

    Google Scholar 

  34. Kieber, J.J., Cytokinin signaling: two-components and more, Trends Plant Sci., 2008, vol. 13, pp. 85–92. https://doi.org/10.1016/j.tplants.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  35. Kieber, J.J. and Schaller, G.E., Cytokinin signaling in plant development, Development, 2018, vol. 145, p. 149344. https://doi.org/10.1242/dev.149344

    Article  CAS  Google Scholar 

  36. Kopečný, D., Briozzo, P., Popelková, H., et al., Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: A structural study, Biochimie, 2010, vol. 92, pp. 1052–1062. https://doi.org/10.1016/j.biochi.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  37. Kosakivska, I.V., Vedenicheva, N.P., Babenko, L.M., et al., Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses, Mol. Biol. Rep., 2022, vol. 49, pp. 617–628. https://doi.org/10.1007/s11033-021-06802-2

    Article  CAS  PubMed  Google Scholar 

  38. Krall, L., Raschke, M., Zenk, M.H., and Baron, C., The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5’-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP, FEBS Lett., 2002, vol. 527, pp. 315–318. https://doi.org/10.1016/S0014-5793(02)03258-1

    Article  CAS  PubMed  Google Scholar 

  39. Li, S., An, Y., Hailati, S., et al., Overexpression of the cytokinin oxidase/dehydrogenase (CKX) from Medicago sativa enhanced salt stress tolerance of Arabidopsis, J. Plant Biol., 2019, vol. 62, pp. 374–386. https://doi.org/10.1007/s12374-019-0141-z

    Article  CAS  Google Scholar 

  40. Li, S.M., Zheng, H.X., Zhang, X.S., et al., Cytokinins as central regulators during plant growth and stress response, Plant Cell Rep., 2021, vol. 40, pp. 271–282. https://doi.org/10.1007/s00299-020-02612-1

    Article  CAS  PubMed  Google Scholar 

  41. Mandal, S., Ghoraiet, M., et al., Cytokinins: A genetic target for increasing yield potential in the CRISPR era, Front. Genet., 2022, vol. 13. https://doi.org/10.3389/fgene.2022.883930

  42. Niemann, M.C.E., Weber, H., Hluska, T., et al., The cytokinin oxidase/dehydrogenase CKX1 is a membrane-bound protein requiring homooligomerization in the endoplasmic reticulum for its cellular activity, Plant Physiol., 2018, vol. 176, pp. 2024–2039. https://doi.org/10.1104/pp.17.00925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nisler, J., Kopečný, D., Končitíková, R., et al., Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase, Plant Mol. Biol., 2016, vol. 92, nos. 1–2, pp. 235–248. https://doi.org/10.1007/s11103-016-0509-0

    Article  CAS  PubMed  Google Scholar 

  44. Nisler, J., Kopečný, D., Pěkná, Z., et al., Diphenylureaderived cytokinin oxidase/dehydrogenase inhibitors for biotechnology and agriculture, J. Exp. Bot., 2020, vol. 72, pp. 355–370. https://doi.org/10.1093/jxb/eraa437

    Article  CAS  Google Scholar 

  45. O’Keefe, D., Song, J., and Jameson, P.E., Isopentenyl transferase and cytokinin oxidase/dehydrogenase gene family members are differentially expressed during pod and seed development in rapid-cycling Brassica, J. Plant Growth Regul., 2011, vol. 30, pp. 92–99. https://doi.org/10.1007/s00344-010-9171-y

    Article  CAS  Google Scholar 

  46. Ongaro, V. and Leyser, O., Hormonal control of shoot branching, J. Exp. Bot., 2008, vol. 59, pp. 67–74. https://doi.org/10.1093/jxb/erm134

    Article  CAS  PubMed  Google Scholar 

  47. Panda, B.B., Sekhar, S., Dash, S.K., et al., Biochemical and molecular characterisation of exogenous cytokinin application on grain filling in rice, BMC Plant Biol., 2018, vol. 18, p. 89. https://doi.org/10.1186/s12870-018-1279-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pils, B. and Heyl, A., Unraveling the evolution of cytokinin signaling, Plant Physiol., 2009, vol. 151, pp. 782–791. https://doi.org/10.1104/pp.109.139188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Radchuk, V., Radchuk, R., Pirko, Y., Vankova, R., Gaudinova, A., Korkhovoy, V., Yemets, A., Weber, H., Weschke, W., and Blume, Ya.B., A somaclonal line SE7 of finger millet (Eleusine coracana) exhibits modified cytokinin homeostasis and increased grain yield, J. Exp. Bot., 2012, vol. 63, pp. 5497–5506. https://doi.org/10.1093/jxb/ers200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ramireddy, E., Chang, L., and Schmülling, T., Cytokinin as a mediator for regulating root system architecture in response to environmental cues, Plant Signal. Behav., 2014, vol. 9, no. 1. https://doi.org/10.4161/psb.27771

  51. Ren, B., Liang, Y., Deng, Y., et al., Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling, Cell Res., vol. 19, pp. 1178–1190. https://doi.org/10.1038/cr.2009.88

  52. Rong, X., Sang, Y., Wang, L., et al., Type-B ARRs control carpel regeneration through mediating AGAMOUS expression in Arabidopsis, Plant Cell Physiol., 2018, vol. 59, pp. 761–769. https://doi.org/10.1093/pcp/pcx187

    Article  CAS  Google Scholar 

  53. Schmülling, T., New insights into the functions of cytokinins in plant development, J. Plant Growth Regul., 2002, vol. 21, pp. 40–49.

    Article  PubMed  Google Scholar 

  54. Schmülling, T., Werner, T., Riefler, M., et al., Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species, J. Plant Res., 2003, vol. 116, pp. 241–252. https://doi.org/10.1007/s10265-003-0096-4

    Article  CAS  PubMed  Google Scholar 

  55. Shimizu-Sato, S., Tanaka, M., and Mori, H., Auxincytokinin interactions in the control of shoot branching, Plant Mol. Biol., 2009, vol. 69, p. 429. https://doi.org/10.1007/s11103-008-9416-3

    Article  CAS  PubMed  Google Scholar 

  56. Todorova, D., Vaseva-Gemisheva, I., Petrov, P., et al., Cytokinin oxidase/dehydrogenase (CKX) activity in wild and ethylene-insensitive mutant eti5 type of Arabidopsis thaliana (L.) Heynh plants and the effect of cytokinin N1-(2-chloro-4-pyridyl)-N2-phenylurea on enzymatic activity and leaf morphology, Acta Physiol. Plant., 2006, vol. 28, pp. 613–617. https://doi.org/10.1007/s11738-006-0057-3

    Article  CAS  Google Scholar 

  57. van Voorthuizen, M.J., Nisler, J., Jiancheng Song, Lukáš Spíchal, and Jameson, P.E., Targeting cytokinin homeostasis in rapid cycling Brassica rapa with plant growth regulators INCYDE and TD-K, Plants, 2021, vol. 10, no. 1, p. 39. https://doi.org/10.3390/plants10010039

    Article  CAS  Google Scholar 

  58. Vaseva, I., Todorova, D., Malbeck, J., et al., Response of cytokinin pool and cytokinin oxidase/dehydrogenase activity to abscisic acid exhibits organ specificity in peas, Acta Physiol. Plant., 2008, vol. 30, pp. 151–155. https://doi.org/10.1007/s11738-007-0103-9

    Article  CAS  Google Scholar 

  59. Vaseva-Gemisheva, I., Lee, D., Karanov, E., et al., Response of Pisum sativum cytokinin oxidase/dehydrogenase expression and specific activity to drought stress and herbicide treatments, Plant Growth Regul., 2005, vol. 46, pp. 199–208. https://doi.org/10.1007/s10725-005-0143-3

    Article  CAS  Google Scholar 

  60. Wang, X., Ding, J., Lin, S., et al., Evolution and roles of cytokinin genes in angiosperms 2: Do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles?, Hortic. Res., 2020, vol. 7, p. 29. https://doi.org/10.1038/s41438-020-0246-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Werner, T., Motyka, V., Strand, M., and Schmülling, T., Regulation of plant growth by cytokinin, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 18, pp. 10487–10492. https://doi.org/10.1073/pnas.171304098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Werner, T., Motyka, V., Laucou, V., et al., Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity, Plant Cell, 2003, vol. 15, no. 11, pp. 2532–2550. https://doi.org/10.1105/tpc.014928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Werner, T., Nehnevajova, E., Kollmer, I., et al., Rootspecific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco, Plant Cell, 2010, vol. 22, pp. 3905–3920. https://doi.org/10.1105/tpc.109.072694

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ye, C., Wu, S., Kong, F., et al., Identification and characterization of an isopentenyltransferase (IPT) gene in soybean (Glycine max L.), Plant Sci., 2006 vol. 170, pp. 542–550. https://doi.org/10.1016/j.plantsci.2005.10.008

    Article  CAS  Google Scholar 

  65. Yeh, S.-Y., Chen, H.-W., Ng, C.-Y., et al., Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield, Rice, 2015, vol. 8, p. 36. https://doi.org/10.1186/s12284-015-0070-5

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zatloukal, M., Gemrotová, M., Doležal, K., et al., Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase, Bioorg. Med. Chem., 2008, vol. 16, no. 20, pp. 9268–9275. https://doi.org/10.1016/j.bmc.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  67. Zubko, E., Adams, C.J., Machaekova, I., et al., Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants, Plant J., 2002, vol. 29, pp. 797–808. https://doi.org/10.1046/j.1365-313X.2002.01256.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the budget project of the National Academy of Sciences of Ukraine (state registration number 0120U100937, 2020-24).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. H. Khablak or Ya. B. Blume.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khablak, S.H., Spivak, S.I., Pastukhova, N.L. et al. Cytokinin Oxidase/Dehydrogenase as an Important Target for Increasing Plant Productivity. Cytol. Genet. 58, 115–125 (2024). https://doi.org/10.3103/S0095452724020051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452724020051

Navigation