Skip to main content
Log in

Strategies for Engineering of Virus-Resistant Plants: Focus on RNases

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Currently, there are approximately 6500 species of viruses known in the world, among which more than 1500 are plant viruses. Most of them are capable of causing epiphytoties, which lead to decreased yields, reduced product quality, and sometimes put valuable commercial varieties or even entire plant species at risk of extinction. The global spread of viruses leads to the need to strengthen phytosanitary and quarantine restrictions, which requires additional financial costs. Understanding of viral biology and the principles of its propagation is a key factor in the formation of strategies and methods for combating these pathogens. Among the newest approaches are the genetic engineering technologies. Their use made it possible to create a number of plant varieties with increased resistance to viruses. However, the problem of creating virus-resistant plants still remains one of the most urgent since viruses acquire the ability to bypass defense mechanisms with time and there is a need to obtain new resistant varieties. There are several main approaches for obtaining of transgenic plants with increased resistance to viruses. They are based on RNA interference, resistance associated with viral capsid proteins, RNA-satellites, antisense RNAs, replicases, RNA-dependent RNA polymerase, the action of ribonucleases, ribosome-inactivating proteins, hammerhead ribozymes, miRNAs, plant antibodies, etc. One of the approaches to creating virus-resistant plants is the use of ribonuclease genes. The genes encoding ribonucleases have different origin and belong to a wide range of hosts: bacteria, fungi, plants, and animals. In particular, extracellular ribonucleases are able to cut nonspecifically molecules of viral RNA in apoplast that allows for creating plants with increased resistance to various plant viruses. This review is focused on the study of various genetic engineering approaches and the prospects of their use for the creation of virus-resistant plants. Emphasis is placed on the study of heterologous ribonuclease genes influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akbar, S., Wei, Y., and Zhang, M., RNA Interference: promising approach to combat plant viruses, Int. J. Mol. Sci., 2022, vol. 23, no. 10, p. 5312. https://doi.org/10.3390/ijms23105312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akhter, M., Nakahara, K.S., and Masuta, C., Resistance induction based on the understanding of molecular interactions between plant viruses and host plants, Virol. J., 2021, vol. 18, p. 176. https://doi.org/10.1186/s12985-021-01647-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alam, I., Sharmin, S.A., Naher, M., et al., Elimination and detection of viruses in meristem-derived plantlets of sweet potato as a low-cost option toward commercialization, 3 Biotech, 2013, vol. 3, no. 2, pp. 153–164. https://doi.org/10.1007/s13205-012-0080-6

  4. Ali, S., Ganai, B.A., Kamili, A.N., et al., Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance, Microbiol. Res., 2018, vols. 212–213, pp. 29–37. https://doi.org/10.1016/j.micres.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  5. Andersen, E.J. and Ali, S., Byamukama, E., et al., Disease resistance mechanisms in plants, Genes (Basel), 2018, vol. 9, no. 7, p. 339. https://doi.org/10.3390/genes9070339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ausubel, F.M., Are innate immune signaling pathways in plants and animals conserved?, Nat. Immunol., 2005, vol. 6, pp. 973–979. https://doi.org/10.1038/ni1253

    Article  CAS  PubMed  Google Scholar 

  7. Bald, J.G., Cytological evidence for the production of plant virus ribonucleic acid in the nucleus, Virology, 1964, vol. 22, no. 3, pp. 377–387. https://doi.org/10.1016/0042-6822(64)90028-5

    Article  CAS  PubMed  Google Scholar 

  8. Balint-Kurti, P., The plant hypersensitive response: concepts, control and consequences, Mol. Plant Pathol., 2019, vol. 20, pp. 1163–1178. https://doi.org/10.1111/mpp.12821

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bariola, P.A., MacIntosh, G.C., and Green, P.J., Regulation of S-like ribonuclease levels in Arabidopsis. Antisense inhibition of RNS1 or RNS2 elevates anthocyanin accumulation, Plant Physiol., 1999, vol. 119, no. 1, pp. 331–342. https://doi.org/10.1104%2Fpp.119.1.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Beachy, R.N., Mechanisms and applications of pathogen-derived resistance in transgenic plants, Curr. Opin. Biotechnol., 1997, vol. 8, no. 2, pp. 215–220. https://doi.org/10.1016/S0958-1669(97)80105-XSi

    Article  CAS  PubMed  Google Scholar 

  11. Bevan, M.W., Flavell, R.B., and Chilton, M.D., A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation, Nature, 1983, vol. 304, no. 5922, pp. 184–187.

    Article  CAS  Google Scholar 

  12. Bhattacharyya, D., Gnanasekaran, P., Kumar, R.K., et al., A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis, J. Exp Bot., 2015, vol. 66, no. 19, pp. 5881–5895. https://doi.org/10.1093/jxb/erv299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bradamante, G., Mittelsten Scheid, O., and Incarbone, M., Under siege: virus control in plant meristems and progeny, Plant Cell, 2021, vol. 33, no. 8, pp. 2523–2537. https://doi.org/10.1093/plcell/koab140

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cao, X., Lu, Y., Di, D., et al., Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli, PLoS One, 2013, vol. 8, no. 10, pp. 1228–1232. https://doi.org/10.1371/journal.pone.0060829

    Article  CAS  Google Scholar 

  15. Citores, L., Iglesias, R., and Ferreras, J.M., Antiviral activity of ribosome-inactivating proteins, Toxins, 2021, vol. 13, no. 2, p. 80. https://doi.org/10.3390/toxins13020080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Conti, G., Rodriguez, M.C., Manacorda, C.A., and Asurmendi, S., Transgenic expression of Tobacco mosaic virus capsid and movement proteins modulate plant basal defense and biotic stress responses in Nicotiana tabacum, Mol. Plant Microb. Interact., 2012, vol. 25, no. 10, pp. 1370–1384. https://doi.org/10.1094/MPMI-03-12-0075-R

    Article  CAS  Google Scholar 

  17. Cosson, P., Schurdi-Levraud, V., Le, Q.H., et al., The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes, PLoS One, 2012, vol. 7, no. 6, p. e39169. https://doi.org/10.1371/journal.pone.0039169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Deshpande, R.A. and Shankar, V., Ribonucleases from T2 family, Crit. Rev. Microbiol., 2002, vol. 28, no. 2, pp. 79–122. https://doi.org/10.1080/1040-840291046704

    Article  CAS  PubMed  Google Scholar 

  19. Ding, L.N., Li, Y.T., Wu, Y.Z., et al., Plant disease resistance-related signaling pathways: recent progress and future prospects, Int. J. Mol. Sci., 2022, vol. 23, no. 24, p. 16200. https://doi.org/10.3390/ijms232416200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dodds, P.N. and Rathjen, J.P., Plant immunity: towards an integrated view of plant-pathogen interactions, Nat. Rev. Genet., 2010, vol. 11, pp. 539–548. https://doi.org/10.1038/nrg2812

    Article  CAS  PubMed  Google Scholar 

  21. Eleftherianos, I., Tafesh-Edwards, G., and Mohamed, A., Pathogen infection routes and host innate immunity: Lessons from insects, Immunol. Lett., 2022, vol. 247, pp. 46–51. https://doi.org/10.1016/j.imlet.2022.05.006

    Article  CAS  PubMed  Google Scholar 

  22. Flores, R., Highly abundant small interfering RNAs derived from a satellite RNA contribute to symptom attenuation by binding helper virus-encoded RNA silencing suppressors, Front. Plant Sci., 2016, vol. 7, p. 692 https://doi.org/10.3389/fpls.2016.00692

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gergerich, R.C. and Dolja V.V., Introduction to plant viruses, the invisible foe, Plant Health Instr., 2006. https://doi.org/10.1094/PHI-I-2006-0414-01

  24. Golemboski, D.B., Lomonossoff, G.P., and Zaitlin, M., Plants transformed with a Tobacco mosaic virus nonstructural gene sequence are resistant to the virus, Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, no. 16, pp. 6311–6315. https://doi.org/10.1073/pnas.87.16.6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grech-Baran, M., Witek, K., Szajko, K., et al., Extreme resistance to Potato virus Y in potato carrying the Ry sto gene is mediated by a TIR-NLR immune receptor, Plant Biotechnol. J., 2020, vol. 18, no. 3. https://doi.org/10.1111/pbi.13230

  26. Green, P.J., The ribonucleases of higher plants, Ann. Rev. Plant Biol., 1994, vol. 45, no. 1, pp. 421–445. https://www.annualreviews.org/doi/pdf/10.1146/annurev.pp.45.060194.002225

  27. Grout, B.W.W., Meristem-tip culture for propagation and virus elimination, in Methods In Molecular Biology, vol. 111: Plant cell culture protocols, Hall, R.D., Ed., Humana Press, 1999. https://doi.org/10.1385/1-59259-583-9:115

  28. Gupta, N., Reddy, K., and Bhattacharyya, D., Plant responses to geminivirus infection: guardians of the plant immunity, Virol. J., 2021, vol. 18, no. 1, p. 143. https://doi.org/10.1186/s12985-021-01612-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hohn, T., Richert-Pöggeler, K.R., Staginnus, C., et al., Evolution of integrated plant viruses, Plant Virus Evol., 2008, pp. 53–81. https://doi.org/10.1007/978-3-540-75763-4_4

  30. Hollings, M., Disease control through virus-free stock, Ann. Rev. Phytopathol., 1965, vol. 3, no. 1, pp. 367–396. https://www.annualreviews.org/doi/pdf/10.1146/annurev.py.03.090165.002055

  31. Holmes, F.O., Inheritance of resistance to tobacco mosaic disease in tobacco, Phytopathology, 1938, vol. 28, no. 8, pp. 553–561. https://www.apsnet.org/edcenter/apsnetfeatures/Documents/2008/Holmes1938.pdf.

    Google Scholar 

  32. Huttner, E., Tucker, W., Vermeulen, A., et al., Ribozyme genes protecting transgenic melon plants against potyviruses, Curr. Issues Mol. Biol., 2001, vol. 3, no. 2, pp. 27–34. https://doi.org/10.21775/cimb.003.027

    Article  CAS  PubMed  Google Scholar 

  33. Jafarzade, M., Ramezani, M., Hedayati, F., et al., Antibody-mediated resistance to rhizomania disease in sugar beet hairy roots, Plant Pathol. J., 2019, vol. 35, no. 6, pp. 692–697. https://doi.org/10.5423/PPJ.OA.04.2018.0073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jewehan, A., Salem, N., Tóth, Z., et al., Screening of Solanum (sections Lycopersicon and Juglandifolia) germplasm for reactions to the tomato brown rugose fruit virus (ToBRFV), J. Plant Dis. Prot., 2022, vol. 129, pp. 117–123. https://doi.org/10.1007/s41348-021-00535-x

    Article  CAS  Google Scholar 

  35. Jiang, T. and Tao, Z., Unraveling the mechanisms of virus-induced symptom development in plants, Plants, 2023, vol. 12, no. 15, p. 2830. https://doi.org/10.3390/plants12152830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnson, A.M.A., Gopal, D.V.R.S., and Sudhakar, C., GM Crops for plant virus resistance: a review, in Genetically Modified Crops, 2020, pp. 257–337. https://doi.org/10.1007/978-981-15-5932-7_11

  37. Kachroo, P., Yoshioka, K., Shah, J., et al., Resistance to turnip crinkle virus in Arabidopsis is regulated by two host genes and is salicylic acid dependent but NPR1, ethylene, and jasmonate independent, Plant Cell, 2000, vol. 12, pp. 677–690. https://doi.org/10.1105/tpc.12.5.677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kochetov, A. and Shumny, V., Transgenic plants as genetic models for studying functions of plant genes, Russ. J. Genet.: Appl. Res., 2017, vol. 7, no. 4, pp. 421–427. https://doi.org/10.1134/S2079059717040050

    Article  CAS  Google Scholar 

  39. Kumar, R. and Kanwar, S.S., Biotechnological production and applications of ribonucleases, in Bio-Technological Production of Bioactive Compounds, Verma, M.L. and Chandel, A.K., Eds., Elsevier, 2020, pp. 363–389. https://doi.org/10.1016/B978-0-444-64323-0.00012-6

  40. Kumar, P., Chandra, S., and Sangeeta Srivastava, V.C., RGAs approach in identification of disease resistance genes and their deployment in crops improvement, Int. J. Appl. Agric. Res., 2017. https://www.ripublication.com/ijaar17/ijaarv12n2_08.pdf.

  41. Kyrychenko, A.M. and Kovalenko, O.G., Basic engineering strategies for virus-resistant plants, Cytol. Genet., 2018, vol. 52, pp. 213–221. https://doi.org/10.3103/S0095452718030076

    Article  Google Scholar 

  42. Lanfermeijer, F.C., Jiang, G., Ferwerda, M.A., et al., The durable resistance gene Tm-2 2 from tomato confers resistance against ToMV in tobacco and preserves its viral specificity, Plant Sci., 2004, vol. 167, no. 4, pp. 687–692. https://doi.org/10.1016/j.plantsci.2004.04.027

    Article  CAS  Google Scholar 

  43. Langenberg, W., Zhang, L., Court, D., et al., Transgenic tobacco plants expressing the bacterial mc gene resist virus infection, Mol. Breed., 1997, vol. 3, pp. 391–399. https://doi.org/10.1023/A:1009697507261

    Article  CAS  Google Scholar 

  44. Lapidot, M., Gafny, R., Ding, B., et al., A dysfunctional movement protein of Tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants, Plant J., 1993, vol. 4, pp. 959–970. https://onlinelibrary.wiley.com/doi/pdf/10. 1046/j.1365-313X.1993.04060959.x

    Article  CAS  Google Scholar 

  45. Lefeuvre, P., Martin, D., Elena, S.F., et al., Evolution and ecology of plant viruses, Nat. Rev. Microbiol., 2019, vol. 17, pp. 632–644. https://doi.org/10.1038/s41579-019-0232-3

    Article  CAS  PubMed  Google Scholar 

  46. Li, F. and Wang, A., RNA-targeted antiviral immunity: more than just RNA silencing, Trends Microbiol., 2019, vol. 27, no. 9, pp. 792–805. https://doi.org/10.1016/j.tim.2019.05.007

    Article  CAS  PubMed  Google Scholar 

  47. Lindbo, J. and Falk, W., The impact of “coat protein-mediated virus resistance” in applied plant pathology and basic research, Phytopathology, 2017, vol. 107, no. 6, pp. 624–634. https://doi.org/10.1094/PHYTO-12-16-0442-RVW

    Article  PubMed  Google Scholar 

  48. Lino, Y., Sugimoto, A., and Yamamoto, M., S. pombe pac1 +, whose overexpression inhibits sexual development, encodes a ribonuclease III-like RNase, EMBO, 1991, vol. 10, pp. 221–226. https://doi.org/10.1002/j.1460-2075.1991.tb07939.x

    Article  Google Scholar 

  49. Liu, S., Chen, M., Li, R., et al., Identification of positive and negative regulators of antiviral RNA interference in Arabidopsis thaliana, Nat. Commun., 2022, vol. 13, no. 1, p. 2994 https://doi.org/10.1038/s41467-022-30771-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. MacIntosh, G.C. and Castandet, B., Organellar and secretory ribonucleases: major players in plant RNA homeostasis, Plant Physiol., 2020, vol. 183, no. 4, pp. 1438–1452. https://doi.org/10.1104/pp.20.00076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mandadi, K.K. and Scholthof, K.B., Plant immune responses against viruses: how does a virus cause disease?, Plant Cell, 2013, vol. 5, pp. 1489–1505. https://doi.org/10.1105/tpc.113.111658

    Article  CAS  Google Scholar 

  52. Manjunatha, L., Rajashekara, H., Uppala, L.S., et al., Mechanisms of microbial plant protection and control of plant viruses, Plants, 2022, vol. 11, no. 24, p. 3449. https://doi.org/10.3390/plants11243449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marathe, R., Anandalakshmi, R., Liu, Y., and Dinesh-Kumar, S.P., The tobacco mosaic virus resistance gene, N, Mol. Plant Pathol., 2002, vol. 3, no. 3, pp. 167–172. https://doi.org/10.1046/j.1364-3703.2002.00110.x

    Article  CAS  PubMed  Google Scholar 

  54. Mengist, A.A. and Tenkegna, T.A., The role of miRNA in plant-virus interaction: a review, Mol. Biol. Rep., 2021, vol. 48, pp. 2853–2861. https://doi.org/10.1007/s11033-021-06290-4

    Article  CAS  Google Scholar 

  55. Milosevic, S., Simonovic, A., Cingel, A., et al., Introduction of dsRNA-specific ribonuclease pac1 into Impatiens walleriana provides resistance to Tomato spotted wilt virus, Sci. Hortic., 2013, vol. 164, no. 17, pp. 499–506. https://doi.org/10.1016/j.scienta.2013.10.015

    Article  CAS  Google Scholar 

  56. Monteiro, F. and Nishimura, M.T., Structural, functional, and genomic diversity of plant NLR proteins: an evolved resource for rational engineering of plant immunity, Ann. Rev. Phytopathol., 2018, vol. 56, pp. 243–267. https://doi.org/10.1146/annurev-phyto-080417-045817

    Article  CAS  Google Scholar 

  57. Mushegian, A.R., Are there 1031 virus particles on Earth, or more, or fewer?, J. Bacteriol., 2020, vol. 202, no. 9, p. e00052-20. https://doi.org/10.1128/jb.00052-20

  58. Musidlak, O., Nawrot, R., and Goździcka-Józefiak, A., Which plant proteins are involved in antiviral defense? Review on in vivo and in vitro activities of selected plant proteins against viruses, Int. J. Mol. Sci., 2017, vol. 18, no. 11, p. 2300. https://doi.org/10.3390/ijms18112300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nejidat, A. and Beachy, R.N., Decreased levels of TMV coat protein in transgenic tobacco plants at elevated temperatures reduce resistance to TMV infection, Virology, 1989, vol. 73, no. 2, pp. 531–538. https://doi.org/10.1016/0042-6822(89)90565-5

    Article  Google Scholar 

  60. Ogawa, T., Toguri, T., Kudoh, H., et al., Double-stranded RNA-specific ribonuclease confers tolerance against Chrysanthemum stunt viroid and Tomato spotted wilt virus in transgenic chrysanthemum plants, Breed. Sci., 2005a, vol. 55, no. 1, pp. 49–55. https://doi.org/10.1270/jsbbs.55.49

    Article  CAS  Google Scholar 

  61. Ogawa, T., Toguri, T., Kudoh, H., et al., Transgenic potato expressing a double-stranded RNA-specific ribonucleases is resistant to Potato spindle tuber viroid, Breed. Sci., 2005b, vol. 15, no. 12, pp. 1290–1294. https://doi.org/10.1038/nbt1197-1290

    Article  Google Scholar 

  62. Okada, K., Kato, T., Oikawa, T., et al., A genetic analysis of the resistance in barley to soil-borne wheat mosaic virus, Breed. Sci., 2020, vol. 70, no. 5, pp. 617–622. https://doi.org/10.1270/jsbbs.20071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ovcharenko, O.O. and Rudas, V.A., Modern approaches to genetic engineering in the Orchidaceae family, Cytol. Genet., 2023, vol. 57, no. 2, pp. 142–156. https://doi.org/10.3103/S0095452723020093

    Article  Google Scholar 

  64. Ovcharenko, O., Potrokhov, A., Sosnovska, D., et al., Increased virus resistance in transgenic petunia with heterologous ZRNaseII gene, JJBS, 2023, vol. 16, no. 4, pp. 587–592 https://doi.org/10.54319/jjbs/160403

    Article  Google Scholar 

  65. Park, C.-J., Kim, K.-J., Shin, R., et al., Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway, Plant J., 2003, vol. 37, no. 2, pp. 186–198. https://doi.org/10.1046/j.1365-313x.2003.01951.x

    Article  Google Scholar 

  66. Parrella, G., Ruffel, S., Moretti, A., et al., Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes, Theor. Appl. Genet., 2002, vol. 105, pp. 855–861. https://doi.org/10.1007/s00122-002-1005-2

    Article  CAS  PubMed  Google Scholar 

  67. Perez, K., Yeam, I., Kang, B.C., et al., Tobacco etch virus infectivity in Capsicum spp. is determined by a maximum of three amino acids in the viral virulence determinant VPg, Mol. Plant-Microbe Interact., 2012, vol. 25, no. 12, pp. 1562–1573. https://doi.org/10.1094/MPMI-04-12-0091-R

    Article  CAS  PubMed  Google Scholar 

  68. Potrokhov, A., Sosnovska, D., Ovcharenko, O., et al., Increased ribonuclease activity in Solanum tuberosum L. transformed with heterologous genes of apoplastic ribonucleases as a putative approach for production of virus resistant plants, Turk. J. Biol., 2021, vol. 45, no. 1, pp. 79–87. https://doi.org/10.3906/biy-2007-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Potrokhov, A., Sosnovskaya, D., and Ovcharenko, O., Antioxidant activity of petunias with the heterologous ribonuclease ZRNase II gene infected with tobacco mosaic virus, Innovative Biosyst. Bioeng., 2022, vol. 6, no. 1, pp. 40–45. https://doi.org/10.20535/ibb.2022.6.1.254464

    Article  CAS  Google Scholar 

  70. Prasad, A., Sett, S., and Prasad, M., Plant-virus-abiotic stress interactions: A complex interplay, Environ. Exp. Bot., 2022, vol. 199, p. 104869. https://doi.org/10.1016/j.envexpbot.2022.104869

    Article  CAS  Google Scholar 

  71. Prins, M., Laimer, M., Noris, E., et al., Strategies for antiviral resistance in transgenic plants, Mol. Plant Pathol., 2008, vol. 9, pp. 73–83. https://doi.org/10.1111/j.1364-3703.2007.00447.x

    Article  CAS  PubMed  Google Scholar 

  72. Pumplin, N. and Voinnet, O., RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence, Nat. Rev. Microbiol., 2013, vol. 11, no. 11, pp. 745–760. https://doi.org/10.1038/nrmicro3120

    Article  CAS  PubMed  Google Scholar 

  73. Raines, R., Ribonuclease A, Chem Rev., 1998, vol. 98, no. 3, pp. 1045–1066. https://doi.org/10.1021/cr960427h

    Article  CAS  PubMed  Google Scholar 

  74. Rashid, A.H.A. and Lateef, D.D., Novel techniques for gene delivery into plants and its applications for disease resistance in crops, Am. J. Plant Sci., 2016, vol. 7, no. 1, pp. 181–193. https://doi.org/10.4236/ajps.2016.71019

    Article  CAS  Google Scholar 

  75. Richard, M.M.S., Knip, M., Aalders, T., et al., Unlike many disease resistances, Rx1-mediated immunity to Potato virus X is not compromised at elevated temperatures, Front. Genet., 2020, vol. 11, p. 417. https://doi.org/10.3389/fgene.2020.00417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rodríguez-Negrete, E.A., Carrillo-Tripp, J., and Rivera-Bustamante, R.F., RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery, J. Virol., 2009, vol. 83, no. 3, pp. 1332–1340. https://doi.org/10.1128/JVI.01474-08

    Article  CAS  PubMed  Google Scholar 

  77. Ronde de D., Butterbach, P., and Kormelink, R., Dominant resistance against plant viruses, Front. Plant Sci., 2014, vol. 5, p. 307. https://doi.org/10.3389/fpls.2014.00307

    Article  Google Scholar 

  78. Rubio, M., Martínez-Gómez, P., and Dicenta, F., Apricot breeding for multiple resistance to Plum pox virus and Apple chlorotic leaf spot virus, Sci. Hortic., 2023, vol. 309, p. 111706. https://doi.org/10.1016/j.scienta.2022.111706

    Article  CAS  Google Scholar 

  79. Ruffel, S., Dussault, M.H., Palloix, A., et al., A natural recessive resistance gene against Potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E), Plant J., 2002, vol. 32, no. 6, pp. 1067–1075. https://doi.org/10.1046/j.1365-313X.2002.01499.x

    Article  CAS  PubMed  Google Scholar 

  80. Ruffel, S., Gallois, J.L., Lesage, M.L., and Caranta, C., The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene, Mol. Genet. Genomics, 2005, vol. 274, pp. 346–353. https://doi.org/10.1007/s00438-005-0003-x

    Article  CAS  PubMed  Google Scholar 

  81. Saez, C., Flores-Leon, A., Montero-Pau, J., et al., RNA-Seq transcriptome analysis provides candidate genes for resistance to Tomato leaf curl New Delhi virus in melon, Front. Plant Sci., 2022, vol. 8, no. 12, p. 798858. https://doi.org/10.3389/fpls.2021.798858

    Article  Google Scholar 

  82. Safarnejad, M.R, Jouzani, G.S., Tabatabaie, M., et al., Antibody-mediated resistance against plant pathogens, Biotechnol. Adv., 2011, vol. 29, pp. 961–971. https://doi.org/10.1016/j.biotechadv.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  83. Salgotra, R.K. and Stewart, C.N., Functional markers for precision plant breeding, Int. J. Mol. Sci., 2020, vol. 21, no. 13, p. 4792. https://doi.org/10.3390/ijms21134792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sangaev, S., Trifonova, E., Titov, S., et al., Effective expression of the gene encoding an extracellular ribonuclease of Zinnia elegans in the SR1 Nicotiana tabacum plants, Russ. J. Genet., 2007, vol. 43, no. 7, pp. 831–833. https://doi.org/10.1134/S1022795407070186

    Article  CAS  Google Scholar 

  85. Sangaev, S., Kochetov, A., Ibragimova, S.S., et al., Physiological role of extracellular ribonucleases of higher plants, Russ. J. Genet.: Appl. Res., 2011, vol. 1, no. 1, pp. 44–50. https://doi.org/10.1134/S2079059711010060

    Article  Google Scholar 

  86. Sano, T., Nagayama, A., Ogawa, T., et al., Transgenic potato expressing a double-stranded RNA-specific ribonucleases is resistant to potato spindle tuber viroid, Nat. Biotechnol., 1997, vol. 15, no. 12, pp. 1290–1294. https://doi.org/10.1038/nbt1197-1290

    Article  CAS  PubMed  Google Scholar 

  87. Scaria, V., Hariharan, M., Maiti, S., et al., Host-virus interaction: a new role for microRNAs, Retrovirology, 2006, vol. 3, p. 68. https://doi.org/10.1186/1742-4690-3-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sehrish, A., Wei, Y., and Zhang, M.-Q., RNA interference: promising approach to combat plant viruses, Int. J. Mol. Sci., 2022, vol. 23, no. 10, p. 5312. https://doi.org/10.3390/ijms23105312

    Article  CAS  Google Scholar 

  89. Sekine, K., Kawakami, S., Hase, S., et al., High level expression of a virus resistance gene, RCY1, confers extreme resistance to Cucumber mosaic virus in Arabidopsis thaliana, Mol. Plant Microb. Interact., 2008, no. 11, pp. 1398–1407. https://doi.org/10.1094/MPMI-21-11-1398

  90. Seo, Y.S., Rojas, M.R., Lee, J.Y., et al., A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 32, pp. 11856–11861. https://doi.org/10.1073/pnas.0604815103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Shaikhaldein, H.O., Hoffmann, B., Alaraidh, I.A., et al., Evaluation of extreme resistance genes of Potato virus X (Rx1 and Rx2) in different potato genotypes, J. Plant Dis. Prot., 2018, vol. 125, pp. 251–257. https://doi.org/10.1007/s41348-018-0148-6

    Article  Google Scholar 

  92. Sheat, S. and Winter, S., Developing broad-spectrum resistance in cassava against viruses causing the cassava mosaic and the cassava brown streak diseases, Front. Plant Sci., 2023, vol. 14, p. 1042701. https://doi.org/10.3389/fpls.2023.1042701

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shen, W.-X., Au, P.C.K., Shi, B.-J., et al., Satellite RNAs interfere with the function of viral RNA silencing suppressors, Front. Plant Sci., 2015, vol. 6, p. 281. https://doi.org/10.3389/fpls.2015.00281

    Article  PubMed  PubMed Central  Google Scholar 

  94. Siar, S.V., Beligan, G.A., Sajise, A.J.C., et al., Papaya ringspot virus resistance in Carica papaya via introgression from Vasconcellea quercifolia, Euphytica, 2011, vol. 181, pp. 159–168. https://doi.org/10.1007/s10681-011-0388-z

    Article  Google Scholar 

  95. Sindarovska, Y.R., Guzyk, O.I., Yuzvenko, L.V., et al., Ribonuclease activity of buckwheat plant (Fagopyrum esculentum) cultivars with different sensitivities to buckwheat burn virus, Ukr. Biochem. J., 2014, vol. 86, no. 3, pp. 33–40. https://doi.org/10.15407/ubj86.03.033

    Article  CAS  PubMed  Google Scholar 

  96. Sindelarova, M. and Sindelar, L., Isolation of pathogenesis-related proteins from TMV-infected tobacco and their influence on infectivity of TMV, Plant Prot. Sci., 2018, vol. 41, no. 2, pp. 52–57. https://doi.org/10.17221/2747-PPS

    Article  Google Scholar 

  97. Singh, A., Taneja, J., Dasgupta I., Mukherjee S.K. Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA, Mol. Plant Pathol., 2015, vol. 16, pp. 724–734. https://doi.org/10.1111/mpp.12229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sugawara, T., Trifonova, E., Kochetov, A., and Kanayama, Y., Expression of an extracellular ribonuclease gene increases resistance to Cucumber mosaic virus in tobacco, BMC Plant Biol., 2016, vol. 16, no. 3, p. 246. https://doi.org/10.1186/s12870-016-0928-8

    Article  CAS  PubMed  Google Scholar 

  99. Takken, F.L.W., Albrecht, M., and Tameling, W.I.L., Resistance proteins: molecular switches of plant defence, Curr. Opin. Plant Biol., 2006, vol. 9, pp. 383–390. https://doi.org/10.1016/j.pbi.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  100. Taninaka, Y., Nakahara, K.S., and Hagiwara-Komoda, Y., Intracellular proliferation of Clover yellow vein virus is unaffected by the recessive resistance gene cyv1 of Pisum sativum, Microbiol. Immunol., 2020, vol. 64, no. 1, pp. 76–82. https://doi.org/10.1111/1348-0421.12755

    Article  CAS  PubMed  Google Scholar 

  101. Tatineni, S. and Hein, G.L., Plant viruses of agricultural importance: current and future perspectives of virus disease management strategies, Phytopathology, 2023, vol. 113, no. 2, pp. 117–141. https://doi.org/10.1094/PHYTO-05-22-0167-RVW

    Article  CAS  PubMed  Google Scholar 

  102. Teixeira, R.M., Ferreira, M.A., Raimundo, G.A.S., and Fontes, E.P.B., Geminiviral triggers and suppressors of plant antiviral immunity, Microorganisms, 2021, vol. 9, no. 4, p. 775. https://doi.org/10.3390/microorganisms9040775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Trifonova, E., Sapotsky, M., Komarova, M., et al., Protection of transgenic tobacco plants expressing bovine pancreatic ribonuclease against Tobacco mosaic virus, Plant Cell Rep., 2007, vol. 26, no. 7, pp. 1121–1126. https://doi.org/10.1007/s00299-006-0298-z

    Article  CAS  PubMed  Google Scholar 

  104. Trifonova, E., Romanova, A., Sangaev, S., et al., Inducible expression of the gene of Zinnia elegans coding for extracellular ribonuclease in Nicotiana tabacum plants, Biol. Plant., 2012, vol. 56, pp. 571–574. https://doi.org/10.1007/s10535-011-0206-4

    Article  CAS  Google Scholar 

  105. Varma, A., Integrated management of plant viral diseases, Ciba Foundation Symposium, Chichester: John Wiley & Sons, 1993, vol. 177, pp. 140–157. https://doi.org/10.1002/9780470514474.ch9

  106. Verchot, J., Plant virus infection and the ubiquitin proteasome machinery: arms race along the endoplasmic reticulum, Viruses, 2016, vol. 8, no. 11, p. 314. https://doi.org/10.3390/v8110314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Verma, K.K., Song, X.P., Budeguer, F., et al., Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation, Plant Signaling Behav., 2022, vol. 17, no. 1, p. 2108253. https://doi.org/10.1080/15592324.2022.2108253

    Article  CAS  Google Scholar 

  108. Vicente, M., De Fazio, G., Menezes, M.E., and Golgher, R.R., Inhibition of plant viruses by human gamma interferon, J. Phytopathol., 1987, vol. 119, pp. 25–31. https://doi.org/10.1111/j.1439-0434.1987.tb04380.x

    Article  Google Scholar 

  109. Wang, X., Kong, L., Zhi, P., and Chang, C., Update on cuticular wax biosynthesis and its roles in plant disease resistance, Int. J. Mol. Sci., 2020, vol. 21, no. 15, p. 5514. https://doi.org/10.3390/ijms21155514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang, M.R., Hamborg, Z., Blystad, D.R., and Wang, Q.C., Combining thermotherapy with meristem culture for improved eradication of onion yellow dwarf virus and shallot latent virus from infected in vitro-cultured shallot shoots, Ann. Appl. Biol., 2021, vol. 178, no. 3, pp. 442–449. https://doi.org/10.1111/aab.12646

    Article  CAS  Google Scholar 

  111. Wang, W., Wang, J., Feng, X., et al., Breeding of virus-resistant transgenic sugarcane by the integration of the Pac1 gene, Front. Sustainable Food Syst., 2022, vol. 6, p. 925839. https://doi.org/10.3389/fsufs.2022.925839

    Article  Google Scholar 

  112. Watanabe, T., Ogawa, H., Takahashi, I., et al., Resistance against multiple plant viruses in plants mediated by a double stranded-RNA specific ribonuclease, FEBS Lett., 1995, vol. 372, nos. 2–3, pp. 165–168. https://doi.org/10.1016/0014-5793(95)00901-K

    Article  CAS  PubMed  Google Scholar 

  113. Xie, Z., Fan, B., Chen, C., and Chen, Z., An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense, Proc. Natl. Acad. Sci. U. S. A., 2001, vol. 98, no. 11, pp. 6516–6521. https://doi.org/10.1073/pnas.111440998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, Z. and Li, Y., Dissection of RNAi-based antiviral immunity in plants, Curr. Opin. Virol., 2018, vol. 32, pp. 88–99. https://doi.org/10.1016/j.coviro.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  115. Yang, X., Niu, L., Zhang, W., et al. Increased multiple virus resistance in transgenic soybean overexpressing the double-strand RNA-specific ribonuclease gene PAC1, Transgenic Res., 2019, vol. 28, pp. 129–140. https://doi.org/10.1007/s11248-018-0108-8

    Article  CAS  PubMed  Google Scholar 

  116. Ye, Z.-H. and Droste, D.L., Isolation and characterization of cDNAs encoding xylogenesis-associated and wounding-induced ribonucleases in Zinnia elegans, Plant Mol. Biol., 1996, vol. 30, pp. 697–709. https://doi.org/10.1007/BF00019005

    Article  CAS  PubMed  Google Scholar 

  117. Younis, A., Siddique, M.I., Kim, C.K., and Lim, K.B., RNA Interference (RNAi) induced gene silencing: a promising approach of Hi-tech plant breeding, Int. J. Biol. Sci., 2014, vol. 10, no. 10, pp. 1150–1158. https://doi.org/10.7150/ijbs.10452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zand Karimi, H. and Innes, R.W., Molecular mechanisms underlying host-induced gene silencing, Plant Cell, 2022, vol. 34, no. 9, pp. 3183–3199. https://doi.org/10.1093/plcell/koac165

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhang, L., French, R., Langenberg, W., and Mitra, A., Accumulation of Barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease, Transgenic Res., 2001, vol. 10, no. 1, pp. 13–19. https://doi.org/10.1023/a:1008931706679

    Article  CAS  PubMed  Google Scholar 

  120. Zhirnov, I.V., Trifonova, E.A., Romanova, A.V., et al., Induced expression of Serratia marcescens ribonuclease III gene in transgenic Nicotiana tabacum L. cv. SR1 tobacco plants, Russ. J. Genet., 2016, vol. 52, no. 11, pp. 1137–1141. https://doi.org/10.1134/S102279541611017X

    Article  CAS  Google Scholar 

  121. Zhu, S., Jeong, R.-D., Lim, G.-H., et al., Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens, Cell Rep., 2013, vol. 4, no. 6, pp. 1168–1184. https://doi.org/10.1016/j.celrep.2013.08.018

    Article  CAS  PubMed  Google Scholar 

  122. Zhu, M., Jiang, L., Bai, B., et al., The intracellular immune receptor sw-5b confers broad-spectrum resistance to tospoviruses through recognition of a conserved 21-amino acid viral effector epitope, Plant Cell, 2017, vol. 29, no. 9, pp. 2214–223. https://doi.org/10.1105/tpc.17.00180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the project of the National Academy of Sciences of Ukraine no. 0122U002115 “Mechanisms of Stress Adaptation and Creation of Stable Plant Lines by Methods of Genetic Engineering” (ІІІ-5-22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Ovcharenko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potrokhov, A.O., Ovcharenko, O.O. Strategies for Engineering of Virus-Resistant Plants: Focus on RNases. Cytol. Genet. 58, 99–114 (2024). https://doi.org/10.3103/S0095452724020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452724020099

Keywords:

Navigation