Skip to main content
Log in

Identification of Cyto- and Genotoxic Effects of Lunularic Acid in Allium cepa L. Root Tip Meristem Cells

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

In this study, dose-dependent effects of lunularic acid (LA) on some physiological, cytogenetic, biochemical and anatomical parameters were investigated in Allium cepa L. bulbs. For this purpose, physiological parameters to be analyzed experimentally: germination percentage, root length, root number and fresh weight; cytogenetic parameters: micronucleus (MN) frequency, chromosomal aberrations (CAs) and mitotic index (MI); biochemical parameters were determined as catalase (CAT), superoxide dismutase (SOD) activities, malondialdehyde (MDA) level and free proline (Pr) content. In addition, cross-sections were taken from the roots and structural changes in meristem cells were examined. Onion bulbs were divided into four groups as one control and three treatments. The bulbs of the control group were kept in cuvettes containing tap water and the bulbs of the treatment group were kept in cuvettes containing 1, 5 and 10 mM LA for 7 days. LA administrations caused a decrease in all investigated physiological parameter values, an increase in the frequency of MN and CAs, and reduce in MI compared to control group. In addition, LA application caused dose-related increases in CAT and SOD activities and MDA and Pr levels compared to control group. LA application promoted CAs such as sticky chromosome, spindle fiber damage, vagrant chromosome, reverse polarization in root meristem cells. After all LA applications, root anatomical structure changes such as epidermis cell deformations, flattened cell nucleus and unclear transmission tissue were observed and it was determined that these changes reached a maximum at 10 mM LA dose. As a result, it has been understood that high doses of LA promote multi-directional toxicity and the Allium test is a very reliable test in determining this toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY

All data generated or analyzed during this study are included in this article.

REFERENCES

  1. Akgündüz, M.C., Çavuşoğlu, K., and Yalçın, E., The potential risk assessment of phenoxyethanol with a versatile model system, Sci. Rep., 2020, vol. 10, pp. 1209–1218. https://doi.org/10.1038/s41598-020-58170-9

  2. Andrade, L.F., Davide, L.C., and Gedraite, L.S., The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa, Ecotoxicol. Environ. Saf., 2010, vol. 73, pp. 626–631. https://doi.org/10.1016/j.ecoenv.2009.12.012

    Article  CAS  PubMed  Google Scholar 

  3. Ashraf, M. and Foolad, M.R., Roles of glycine betaine and proline in improving plant abiotic stress resistance, Environ. Exp. Bot., 2007, vol. 59, pp. 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  4. Aydın, D., Yalçın, E., and Çavuşoğlu, K., Metal chelating and anti-radical activity of Salvia ofcinalis in the ameliorative effects against uranium toxicity, Sci. Rep., 2022, vol. 12, p. 15845. https://doi.org/10.1038/s41598-022-20115-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  6. Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  7. Beers, R.F. and Sizer, I.W., Colorimetric method for estimation of catalase, J. Biol. Chem., 1952, vol. 195, pp. 133–139.

    Article  CAS  PubMed  Google Scholar 

  8. Boughalleb, F., Abdellaoui, R., Mahmoudi, M., and Bakhshandeh, E., Changes in phenolic profile, soluble sugar, proline, and antioxidant enzyme activities of Polygonum equisetiforme in response to salinity, Turk. J. Bot., 2020, vol. 44, pp. 25–35.

    Article  CAS  Google Scholar 

  9. Çavuşoğlu, D., Yalçın, E., Çavuşoğlu, K., Acar, A., and Yapar, K., Molecular docking and toxicity assessment of spirodiclofen: protective role of lycopene, Environ. Sci. Pollut. Res., 2021, vol. 28, no. 40, pp. 57372–57385. https://doi.org/10.1007/s11356-021-14748-y

    Article  CAS  Google Scholar 

  10. Chaparro, T.R., Botta, C.M., and Pires, E.C., Biodegradability and toxicity assessment of bleach plant effluents treated anaerobically, Water Sci. Technol., 2010, vol. 62, pp. 1312–1319. https://doi.org/ 389https://doi.org/10.2166/wst.2010.944

  11. Dahl, K.N., Ribeiro, A.J., and Lammerding, J., Nuclear shape, mechanics, and mechanotransduction, Circ. Res., 2008, vol. 102, pp. 1307–1318. https://doi.org/10.1161/CIRCRESAHA.108.173989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dauer, W.T. and Worman, H.J., The nuclear envelope as a signaling node in development and disease, Dev. Cell, 2009, vol. 17, pp. 626–638. https://doi.org/10.1016/j.devcel.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  13. Davey, M.W., Stals, E., Panis, B., Keulemans, J., and Swennen, R.L., High-throughput determination of malondialdehyde in plant tissues, Anal. Biochem., 2005, vol. 347, no. 2, pp. 201–207. https://doi.org/10.1016/j.ab.2005.09.041

    Article  CAS  PubMed  Google Scholar 

  14. Devireddy, A.R., Tschaplinski, T.J., Tuskan, G.A., Muchero, W., and Chen, J.G., Role of reactive oxygen species and hormones in plant responses to temperature changes, Int. J. Mol. Sci., 2021, vol. 22, no. 16, p. 8843. https://doi.org/10.3390/ijms22168843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dikker, O., Şahin, M., Atar, S., and Bekpınar, S., Examination of oxidative stress markers in women with postmenopausal osteoporosis, Turk. J. Osteoporosis, 2018, vol. 24, no. 1, pp. 15–20. https://doi.org/10.4274/tod.71501

    Article  Google Scholar 

  16. Fan, X., Zhou, X., Chen, H., Tang, M., and Xie, X., Cross-talks between macro-and micronutrient uptake and signaling in plants, Front. Plant Sci., 2021, vol. 12, p. 663477. https://doi.org/10.3389/fpls.2021.663477

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fedina, I.S. and Benderliev, K.M., Response of Scendesmus incrassatulus to salt stress as affected by methyl jasmonate, Biol. Plant, 2000, vol. 43, pp. 625–627. https://doi.org/10.1023/A:1002816502941

    Article  CAS  Google Scholar 

  18. Gorham, J., Phenolic compounds other than flavonoids from bryophytes, in Bryophytes: their Chemistry and Chemical Taxonomy, Zimsmeister, H.D. and Mues, R., Eds., Oxford, 1990, pp. 171–200.

    Google Scholar 

  19. Grant, W.F., Higher plant assays for the detection of chromosomal aberrations and gene mutations—a brief historical background on their use for screening and monitoring environmental chemicals, Mutat. Res., 1999, vol. 426, pp. 107–112. https://doi.org/10.1016/s0027-5107(99)00050-0

    Article  CAS  PubMed  Google Scholar 

  20. Harashima, H. and Schnittger, A., The integration of cell division, growth, and differentiation, Curr. Opin. Plant Biol., 2010, vol. 13, no. 1, pp. 66–74. https://doi.org/10.1016/j.pbi.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto, T., Tori, M., and Asakawa, Y., A highly efficient preparation of lunularic acid and some biological activities of stilbene and dihydrostilbene derivatives, Phytochemistry, 1988, vol. 27, pp. 109–113. https://doi.org/10.1016/0031-9422(88)80599-5

    Article  CAS  Google Scholar 

  22. Ighodaro, O.M. and Akinloye, O.A., First line defence antioxidants – superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid, Alexandria J. Med., 2018, vol. 54, no. 4, pp. 287–293. https://doi.org/10.1016/j.ajme.2017.09.001

    Article  Google Scholar 

  23. Imoto, S.A. and Ohta, Y., Intracellular localization of lunularic acid and prelunularic acid in suspension cultured cells of Marchantia polymorpha, Plant Physiol., 1985, vol. 79, pp. 751–755. https://doi.org/10.1104/pp.79.3.751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalefetoğlu Macar, T., Macar, O., Çavuşoğlu, K., Yalçın, E., and Yapar, K., Turmeric (Curcuma longa L.) tends to reduce the toxic effects of nickel (II) chloride in Allium cepa L. roots, Environ. Sci. Pollut. Res., 2022, vol. 29, no. 40, pp. 60508–60518. https://doi.org/10.1007/s11356-022-20171-8

    Article  CAS  Google Scholar 

  25. Küplemez, H. and Yildirim, M.U., Effects of cytokinin and auxin on plant development and vascular tissues in Lens culinaris, Commagene J. Biol., 2020, vol. 4, no. 1, pp. 16–21. https://doi.org/10.31594/commagene.704271431

    Article  Google Scholar 

  26. Kwak, J.M., Nguyen, V., and Schroeder, J.I., The role of reactive oxygen species in hormonal responses, Plant Physiol., 2006. vol. 141, no. 2, pp. 323–329. https://doi.org/10.1104/pp.106.079004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Macar, O., Macar, T.K., Çavuşoğlu, K., and Yalçın, E., Protective effects of anthocyanin-rich bilberry (Vaccinium myrtillus) extract against copper (II) chloride toxicity, Environ. Sci. Pollut. Res., 2020, vol. 27, no. 2, pp. 1428–1435. https://doi.org/10.1007/s11356-019-06781-9

    Article  CAS  Google Scholar 

  28. Marrelli, M., Amodeo, V., Statti, G., and Conforti, F., Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities, Molecules, 2019, vol. 24, pp. 119–136. https://doi.org/10.3390/molecules24010119

    Article  CAS  Google Scholar 

  29. Martinez, C.A., Maestri, M., and Lani, E.G., In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differing in frost resistance, Plant Sci., 2003, vol. 116, pp. 117–184.

    Google Scholar 

  30. Matysik, J., Alia-Bhalu, B., and Mohanty, P., Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants, Curr. Sci., 2002, vol. 82, pp. 525–532. https://www.jstor.org/stable/24105959

    CAS  Google Scholar 

  31. Mithöfer, A. and Maffei, M.E., General mechanisms of plant defense and plant toxins, Plant Toxins, 2017, pp. 3–24. https://doi.org/10.1007/978-94-007-6464-4_21

  32. Munns, R. and Tester, M., Mechanisms of salt tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  33. Novikova, G.V., et al., Coupling of cell division and differentiation in Arabidopsis thaliana cultured cells with interaction of ethylene and ABA signaling pathways, Life, 2020, vol. 10, no. 2, p. 15. https://doi.org/10.3390/life10020015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Othman, E.M., Naseem, M., Awad, E., Dandekar, T., and Stopper, H., The plant hormone cytokinin confers protection against oxidative stress in mammalian cells, PLoS One, 2016, vol. 11, no. 12, p. e0168386. https://doi.org/10.1371/journal.pone.0168386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Per, T.S., et al., Jasmonates in plants under abiotic stresses: Crosstalk with other phytohormones matters, Environ. Exp. Bot., 2018, vol. 145, pp. 104–120.

    Article  CAS  Google Scholar 

  36. Peruzzi, L., Carta, A., and Altinordu, F., Chromosome diversity and evolution in Allium (Allioideae, Amaryllidaceae), Plant Biosyst., 2017, vol. 151, pp. 212–220. https://doi.org/10.1080/11263504.2016.1149123

    Article  Google Scholar 

  37. Pryce, R.J. and Kent, U.K., Lunularic acid, a common endogenous growth inhibitor of liverworts, Planta, 1971, vol. 97, pp. 354–357. https://www.jstor.org/stable/23369226.

    Article  CAS  PubMed  Google Scholar 

  38. Rademacher, W., Plant growth regulators: backgrounds and uses in plant production, J. Plant Growth Regul., 2015, vol. 34, pp. 845–872. https://doi.org/10.1007/s00344-015-9541-6

    Article  CAS  Google Scholar 

  39. Rajaei, P. and Mohamad, N., Effect of beta aminobutyric acid (BABA), ABA and ethylene synthesis inhibitor (CoCl2) on seed germination and seedling growth of Brassica napus L., Eur. J. Exp. Biol., 2013, vol. 3, pp. 437–440.

    CAS  Google Scholar 

  40. Sagi, M. and Fluhr, R., Production of reactive oxygen species by plant NADPH oxidases, Plant Physiol., 2006, vol. 141, pp. 336–340. https://doi.org/10.1104/pp.106.078089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwabe, W.W., Lunularic acid in growth and dormancy of liverworts, in Bryophyte Development in Physiology and Biochemistry, Chopra, R.N. and Bhatla, S.C., Eds., Boca Raton, 1990, pp. 245–257.

    Google Scholar 

  42. Sharma, P.C. and Gupta, P.K., Karyotypes in some pulse crops, Nucleus, 1982, vol. 25, pp. 181–185.

    Google Scholar 

  43. Sipahi Kuloğlu, S., Yalçın, E., Çavuşoğlu, K., and Acar, A., Dose‑dependent toxicity profile and genotoxicity mechanism of lithium carbonate, Sci. Rep., 2022, vol. 12, p. 13504. https://doi.org/10.1038/s41598-022-17838-0

    Article  CAS  Google Scholar 

  44. Soares, A.M.S., Souza, T.F., Jacinto, T., and Machado, O.L.T., Effect of methyl jasmonate on antioxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves, Braz. J. Plant Physiol., 2010, vol. 22, pp. 151–158. https://doi.org/10.1590/S1677-04202010000300001

    Article  Google Scholar 

  45. Spann, T.L. and Ferguson, L., Commercial production of container grown Citrus trees, in Citrus Production Manual, University of California Agriculture and Natural Resources Press, Ferguson, L. and Grafton Cardwell, E., Eds., 2014, p. 433.

    Google Scholar 

  46. Srivastava, A.K. and Singh, D., Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model, Sci. Rep., 2020, vol. 10, pp. 1–10. https://doi.org/10.1038/s41598-020-57840-y

    Article  CAS  Google Scholar 

  47. Tedesco, S.B. and Laughinghouse, I.V.H.D., Bioindicator of genotoxicity. The Allium cepa test, J. Environ. Contam., 2012, pp. 138–156.

  48. Tütünoğlu, B., Aksoy, Ö., Özbek, R., and Uçkan, F., The effects of gibberellic acid on Allium cepa root tip meristematic cells, Biol. Plant., 2019, vol. 63, pp. 365–370. https://doi.org/10.32615/bp.2019.042

    Article  CAS  Google Scholar 

  49. Ünal, Z., Morphological, physiological, and biochemical effects of some abiotic stresses on proline-supported citrus rootstocks, MSc Thesis, Akdeniz Univ. Inst. Sci., 2019, pp. 1–127.

  50. Ünal, M., Palavan Ünsal, N., and Tüfekci, M.A., Role of putrescine and its biosynthetic inhibitor on seed germination root elongation and mitosis in Hordeum vulgare L., Bull. Pure Appl. Sci. Bot., 2002, vol. 21, pp. 33–38.

    Google Scholar 

  51. Ünyayar, S., Çelik, A., Çekic, F.O., and Gözel, A., Cadmium-induced genotoxicity, cytotoxicity, and lipid peroxidation in Allium sativum and Vicia faba, Mutagenesis, 2006, vol. 21, pp. 77–81. https://doi.org/10.1093/mutage/gel001

    Article  PubMed  Google Scholar 

  52. Vranova, E., Inzé D., and Van Breusegen, F., Signal transduction during oxidative stress, J. Exp. Bot., 2002, vol. 53, pp. 1227–1236.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X.S. and Han, J.G., Changes in proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress, Agric. Sci. China, 2009, vol. 8, pp. 431–440. https://doi.org/10.1016/S1671-2927(08)60229-1

    Article  CAS  Google Scholar 

  54. Xia, X.J., et al., Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance, J. Exp. Bot., 2015, vol. 66, no. 10, pp. 2839–2856. https://doi.org/10.1093/jxb/erv089

    Article  CAS  PubMed  Google Scholar 

  55. Yao, X., et al., Exogenous abscisic acid modulates reactive oxygen metabolism and related gene expression in Platycladus orientalis under H2O2-induced stress, Russ. J. Plant Physiol., 2020, vol. 67, pp. 85–93. https://doi.org/10.1134/S1021443720010264

    Article  CAS  Google Scholar 

  56. Yoshikawa, H., Ichik, Y., Sakakibara, K.D., Tamura, H., and Suiko, M., The biological and structural similarity between lunularic acid and abscisic acid, Biosci. Biotechnol. Biochem., 2002, vol. 66, pp. 840–846. https://doi.org/10.1271/bbb.66.840

    Article  CAS  PubMed  Google Scholar 

  57. Zou, J., Yue, J., Jiang, W., and Liu, D., Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. agrogarum L, Acta Biol. Cracov., Ser. Bot., 2012, vol. 54, pp. 129–141. https://doi.org/10.2478/v10182-012-0015-x

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

All authors (Dilek Çavuşoğlu, Kürşat Çavuşoğlu, Kültiğin Çavuşoğlu, Emine Yalçin) contributed to the study conception and design. All authors read and approved the final manuscript.

All authors contributed equally to this work.

Corresponding author

Correspondence to Dilek Çavuşoğlu.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects. The authors confirm that the manuscript has been read and approved by all authors. The authors declare that this manuscript has not been published and is not under consideration for publication elsewhere.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavuşoğlu, D., Çavuşoğlu, K., Çavuşoğlu, K. et al. Identification of Cyto- and Genotoxic Effects of Lunularic Acid in Allium cepa L. Root Tip Meristem Cells. Cytol. Genet. 58, 178–189 (2024). https://doi.org/10.3103/S009545272402004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545272402004X

Keywords:

Navigation