Skip to main content
Log in

Corrections to the Electrical Capacitance of Deformed Lipid Membrane

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The thickness of the lipid membrane is its substantial characteristics. Usually, the thickness of a lipid bilayer is experimentally determined by measuring its electrical capacitance in the approximation of a plane-parallel capacitor. However, membranes formed from a mixture of lipids or containing membrane-deforming inclusions are laterally inhomogeneous, and for them the plane-parallel capacitor approximation generally does not hold. In this work, corrections to the electrical capacitance resulting from deformation of the lipid membrane were numerically calculated. It is shown that the model of a planar capacitor (or their parallel connections), in the general case, does not quantitatively describe these corrections due to the non-zero tangential component of the electric field strength. It is shown that the relative deviation of corrections to the electrical capacitance calculated in various simplified models from the exact solution can reach 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Evans E., Heinrich V., Ludwig F., Rawicz W. 2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys. J. 85, 2342–2350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Evans E., Smith B.A. 2011. Kinetics of hole nucleation in biomembrane rupture. New J. Phys. 13, 095010.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Akimov S.A., Molotkovsky R.J., Kuzmin P.I., Galimzyanov T.R., Batishchev O.V. 2020. Continuum models of membrane fusion: Evolution of the theory. Int. J. Mol. Sci. 21, 3875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karpunin D.V., Akimov S.A., Frolov V.A. 2005. Pore formation in lipid membranes containing lysolipids and cholesterol. Biol. Membrany (Rus.). 22, 429–432.

    CAS  Google Scholar 

  6. Golani G., Leikina E., Melikov K., Whitlock J.M., Gamage D.G., Luoma-Overstreet G., Millay D.P., Kozlov M.M., Chernomordik L.V. 2021. Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm. Nature Comm. 12, 495.

    Article  CAS  Google Scholar 

  7. Molotkovsky R.J., Kuzmin P.I. 2022. Fusion of peroxisome and lipid droplet membranes: Expansion of a π-shaped structure. Biol. Membrany (Rus.). 39, 404–416.

    CAS  Google Scholar 

  8. Kondrashov O.V., Galimzyanov T.R., Pavlov K.V., Kotova E.A., Antonenko Y.N., Akimov S.A. 2018. Membrane elastic deformations modulate gramicidin A transbilayer dimerization and lateral clustering. Biophys. J. 115, 478–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lundbæk J.A., Andersen O.S. 1999. Spring constants for channel-induced lipid bilayer deformations estimates using gramicidin channels. Biophys. J. 76, 889–895.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pan J., Tieleman D.P., Nagle J.F., Kučerka N., Tristram-Nagle S. 2009. Alamethicin in lipid bilayers: Combined use of X-ray scattering and MD simulations. Biochim. Biophys. Acta. 1788, 1387–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sukharev S., Anishkin A. 2023. Mechanosensitive channels: The history, diversity, and the emerging mechanisms. Biol. Membrany (Rus.). 40 (1), 19–42.

    CAS  Google Scholar 

  12. Heftberger P., Kollmitzer B., Rieder A.A., Amenitsch H., Pabst G. 2015. In situ determination of structure and fluctuations of coexisting fluid membrane domains. Biophys. J. 108, 854–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfeffermann J., Eicher B., Boytsov D., Hannesschlaeger C., Galimzyanov T.R., Glasnov T.N., Pabst G., Akimov S.A., Pohl P. 2021. Photoswitching of model ion channels in lipid bilayers. J. Photochem. Photobiol. B. 224, 112320.

    Article  CAS  PubMed  Google Scholar 

  14. Peng C., Song S., Fort T. 2006. Study of hydration layers near a hydrophilic surface in water through AFM imaging. Surface and Interface Analysis. 38, 975–980.

    Article  CAS  Google Scholar 

  15. Higgins M.J., Polcik M., Fukuma T., Sader J.E., Nakayama Y., Jarvis S.P. 2006. Structured water layers adjacent to biological membranes. Biophys. J. 91, 2532–2542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Montal M., Mueller P. 1972. Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Natl. Acad. Sci. USA. 69, 3561–3566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benz R., Fröhlich O., Läuger P., Montal M. 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta. 394, 323–334.

    Article  CAS  PubMed  Google Scholar 

  18. Saitov A., Akimov S.A., Galimzyanov T.R., Glasnov T., Pohl P. 2020. Ordered lipid domains assemble via concerted recruitment of constituents from both membrane leaflets. Phys. Rev. Lett. 124, 108102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soibel’man Ya.S. 1984. Asymptotics of the capacity of a condenser with plates of an arbitrary shape. Sib. Math. J. 25, 966–978.

    Article  Google Scholar 

  20. Semakhin A.N., Shneerson G.A. 1990. Computation of the main part of correction of condenser capacity between 2 conductors separated by short space. Zhurnal Tekhnicheskoi Fiziki (Rus.). 60, 5–12.

    Google Scholar 

  21. Cherepanov D.A., Feniouk B.A., Junge W., Mulkidjanian A.Y. 2003. Low dielectric permittivity of water at the membrane interface: Effect on the energy coupling mechanism in biological membranes. Biophys. J. 85, 1307–1316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Merla C., Liberti M., Apollonio F., d’Inzeo G. 2009. Quantitative assessment of dielectric parameters for membrane lipid bi-layers from RF permittivity measurements. Bioelectromagnetics. 30, 286–298.

    Article  CAS  PubMed  Google Scholar 

  23. Beaven A.H., Maer A.M., Sodt A.J., Rui H., Pastor R.W., Andersen O.S., Im W. 2017. Gramicidin A channel formation induces local lipid redistribution I: Experiment and simulation. Biophys. J. 112, 1185–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. García-Sáez A.J., Chiantia S., Schwille P. 2007. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282, 33537–33544.

    Article  PubMed  Google Scholar 

  25. Sodt A.J., Venable R.M., Lyman E., Pastor R.W. 2016. Nonadditive compositional curvature energetics of lipid bilayers. Phys. Rev. Lett. 117, 138104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Leikin S., Kozlov M.M., Fuller N.L., Rand R.P. 1996. Measured effects of diacylglycerol on structural and elastic properties of phospholipid membranes. Biophys. J. 71, 2623–2632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reddy A.S., Warshaviak D.T., Chachisvilis M. 2012. Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochim. Biophys. Acta. 1818, 2271–2281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rinia H.A., Snel M.M., van der Eerden J.P., de Kruijff B. 2001. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501, 92–96.

    Article  CAS  PubMed  Google Scholar 

  29. Saslowsky D.E., Lawrence J., Ren X., Brown D.A., Henderson R.M., Edwardson J.M. 2002. Placental alkaline phosphatase is efficiently targeted to rafts in supported lipid bilayers. J. Biol. Chem. 277, 26966–26970.

    Article  CAS  PubMed  Google Scholar 

  30. Kim T., Lee K.I., Morris P., Pastor R.W., Andersen O.S., Im W. 2012. Influence of hydrophobic mismatch on structures and dynamics of gramicidin A and lipid bilayers. Biophys. J. 102, 1551–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang H.W. 1986. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lavrentev M.A., Shabat B.V. 1987. Methods of the theory of function of complex variable. Moscow: Nauka.

    Google Scholar 

  33. Kondrashov O.V., Akimov S.A. 2022. Lateral interaction of cylindrical transmembrane peptides in a one-dimensional approximation. Biol. Membrany (Rus.). 39, 186–194.

    CAS  Google Scholar 

  34. Kondrashov O.V., Akimov S.A. 2022. The possibility of pore formation in lipid membranes by several molecules of amphipathic peptides. Biol. Membrany (Rus.). 39, 384–397.

    CAS  Google Scholar 

  35. Pinigin K.V., Kondrashov O.V., Jiménez-Munguía I., Alexandrova V.V., Batishchev O.V., Galimzyanov T.R., Akimov S.A. 202. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci. Rep. 10, 4087.

  36. Bohinc K., Kralj-Iglič V., May S. 2003. Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J. Chem. Phys. 119, 7435–7444.

    Article  CAS  Google Scholar 

  37. Zemel A., Ben-Shaul A., May S. 2005. Perturbation of a lipid membrane by amphipathic peptides and its role in pore formation. Eur. Biophys. J. 34, 230–242.

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen C., Goulian M., Andersen O.S. 1998. Energetics of inclusion-induced bilayer deformations. Biophys. J. 74, 1966–1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-24-00661, https://rscf.ru/project/22-24-00661/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Akimov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no obvious or potential conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by S. Akimov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrashov, O.V., Akimov, S.A. Corrections to the Electrical Capacitance of Deformed Lipid Membrane. Biochem. Moscow Suppl. Ser. A 18, 16–21 (2024). https://doi.org/10.1134/S1990747824700028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747824700028

Keywords:

Navigation