Skip to main content
Log in

Temperature Drift of Silicon Photodiode Spectral Sensitivity

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The spectral sensitivity change of a silicon photodiode with its temperature is analyzed in the article. This research area is relevant because silicon photodiodes are used as sensitive elements in temperature control systems of the vapour-phase epitaxy process. Technical characteristics of the obtained semiconductor devices are mostly determined by the quality of heterostructures used for their manufacture. The optical pyrometry method is used for the surface temperature precise control of the A3B5 solid solutions active layers during metalorganic chemical vapour deposition (MOCVD). Since the surface relief and parameters during deposition change significantly, classical pyrometry leads to significant measurement errors, so the pyrometry method with radiation compensation is used. This method combines the wafer surface radiation measurement and its reflectivity. This allows to determine the surface temperature true value, the layer thickness and the heat distribution uniformity on the wafer in real time.

However, for high precision, it is necessary to take into account the temperature coefficient of the silicon photodiode ampere-watt sensitivity change. The basics of MOCVD technology are discussed in this article. The features of the epitaxy process in the reactor with high-precision temperature control are highlighted.

The analytical and empirical study of change in silicon photodiode ampere-watt sensitivity and its effect on measurement accuracy are given. The research results improve the accuracy of real temperature measurement using pyrometric parameter control systems in MOCVD technology and help to understand and to take into account the influence of temperature factors on measurement accuracy to improve this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. J. R. Creighton, W. G. Breiland, D. D. Koleske, G. Thaler, M. H. Crawford, "Emissivity-correcting mid-infrared pyrometry for group-III nitride MOCVD temperature measurement and control," J. Cryst. Growth, v.310, n.6, p.1062 (2008). DOI: https://doi.org/10.1016/j.jcrysgro.2007.12.063.

    Article  Google Scholar 

  2. S. I. Krukovskyi, V. Arikov, A. O. Voronko, V. S. Antonyuk, "Features of low-temperature GaAs formation for epitaxy device structures," J. Nano- Electron. Phys., v.14, n.2, p.02016 (2022). DOI: https://doi.org/10.21272/jnep.14(2).02016.

    Article  Google Scholar 

  3. D. F. Storm, T. A. Growden, E. M. Cornuelle, P. R. Peri, T. Osadchy, J. W. Daulton, W.-D. Zhang, D. S. Katzer, M. T. Hardy, N. Nepal, R. Molnar, E. R. Brown, P. R. Berger, D. J. Smith, D. J. Meyer, "Dependence of growth temperature on the electrical properties and microstructure of MBE-grown AlN/GaN resonant tunneling diodes on sapphire," J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., v.38, n.3 (2020). DOI: https://doi.org/10.1116/6.0000052.

    Article  Google Scholar 

  4. H. Ghadi, J. F. McGlone, Z. Feng, A. F. M. A. U. Bhuiyan, H. Zhao, A. R. Arehart, S. A. Ringel, "Influence of growth temperature on defect states throughout the bandgap of MOCVD-grown β -Ga2O3," Appl. Phys. Lett., v.117, n.17 (2020). DOI: https://doi.org/10.1063/5.0025970.

    Article  Google Scholar 

  5. M. Belousov, B. Volf, J. C. Ramer, E. A. Armour, A. Gurary, "In situ metrology advances in MOCVD growth of GaN-based materials," J. Cryst. Growth, v.272, n.1–4, p.94 (2004). DOI: https://doi.org/10.1016/j.jcrysgro.2004.08.080.

    Article  Google Scholar 

  6. A. Gurary, "Application of emissivity compensated pyrometry for temperature measurement and control during compound semiconductors manufacturing," in AIP Conference Proceedings (AIP, 2003). DOI: https://doi.org/10.1063/1.1627233.

    Chapter  Google Scholar 

  7. Hamamatsu Photonics, Silicon photodiode basics: Si photodiodes (2022). URI: https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/si_pd_kspd0001e.pdf.

  8. J. Hartmann, J. Fischer, U. Johannsen, L. Werner, "Analytical model for the temperature dependence of the spectral responsivity of silicon," J. Opt. Soc. Am. B, v.18, n.7, p.942 (2001). DOI: https://doi.org/10.1364/JOSAB.18.000942.

    Article  Google Scholar 

  9. H. A. Weakliem, D. Redfield, "Temperature dependence of the optical properties of silicon," J. Appl. Phys., v.50, n.3, p.1491 (1979). DOI: https://doi.org/10.1063/1.326135.

    Article  Google Scholar 

  10. P. Geng, W. Li, X. Zhang, X. Zhang, Y. Deng, H. Kou, "A novel theoretical model for the temperature dependence of band gap energy in semiconductors," J. Phys. D Appl. Phys., v.50, n.40, p.40LT02 (2017). DOI: https://doi.org/10.1088/1361-6463/aa85ad.

    Article  Google Scholar 

  11. C. Schinke, P. Christian Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, D. MacDonald, "Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon," AIP Adv., v.5, n.6 (2015). DOI: https://doi.org/10.1063/1.4923379.

    Article  Google Scholar 

  12. J. Heller, J. W. Bartha, C. C. Poon, A. C. Tam, "Temperature dependence of the reflectivity of silicon with surface oxide at wavelengths of 633 and 1047 nm," Appl. Phys. Lett., v.75, n.1, p.43 (1999). DOI: https://doi.org/10.1063/1.124271.

    Article  Google Scholar 

  13. L. Werner, J. Fischer, U. Johannsen, J. Hartmann, "Accurate determination of the spectral responsivity of silicon trap detectors between 238 nm and 1015 nm using a laser-based cryogenic radiometer," Metrologia, v.37, n.4, p.279 (2000). DOI: https://doi.org/10.1088/0026-1394/37/4/3.

    Article  Google Scholar 

  14. V. G. Verbitskiy, V. S. Antonyuk, A. O. Voronko, L. M. Korolevych, D. V. Verbitskiy, D. O. Novikov, "Matrix of photosensitive elements for determining the coordinates of the source of optical radiation," J. Nano- Electron. Phys., v.13, n.4, p.04029 (2021). DOI: https://doi.org/10.21272/jnep.13(4).04029.

    Article  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Voronko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 2, pp. 85-96, February, 2023 https://doi.org/10.20535/S002134702302005X .

Publisher’s Note. Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronko, A., Novikov, D. & Shymanovskyi, O. Temperature Drift of Silicon Photodiode Spectral Sensitivity. Radioelectron.Commun.Syst. 66, 74–84 (2023). https://doi.org/10.3103/S073527272302005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527272302005X

Keywords:

Navigation