Skip to main content

Advertisement

Log in

Effect of grain refinement on Cp-Ti sheets via repetitive corrugation and straightening technique for implant applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, ultrafine grained commercially pure titanium (Cp-Ti) was developed using repetitive corrugation and straightening (RCS) process. The optical micrographs revealed a 90% grain refinement of processed sample to 5 µm from initial size of 50 µm. The microhardness value revealed a 44.70% increase in hardness from 170 to 246 HV. The ultimate tensile strength was found to be 589 MPa which is 37% more than the as-received sample. The contact angle (45.3°) of processed sample exhibits the hydrophilic behavior of processed sample. This further facilitated the enhanced protein adsorption and cell attachment in the samples which was instantiated by the biocompatibility studies. The in-vitro bioactivity study was conducted on the immersed samples in simulated body fluid and a dense apatite growth with a Ca/P ratio of 1.66 was observed. Hence, RCS processed Cp-Ti is suggested as a potential candidate for load bearing applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data produced in the study cannot be shared at this time, as it will be used for the ongoing research.

Code availability

Not applicable.

References

  1. B.R. Sunil, A. Thirugnanam, U. Chakkingal, T.S.S. Kumar, Nano and ultra fine grained metallic biomaterials by severe plastic deformation techniques. Mater. Technol. 31, 743–755 (2016). https://doi.org/10.1080/10667857.2016.1249133

    Article  CAS  Google Scholar 

  2. B. Rikhari, S.P. Mani, N. Rajendran, Polypyrrole/graphene oxide composite coating on Ti implants: a promising material for biomedical applications. J. Mater. Sci. 55, 5211–5229 (2020)

    Article  CAS  Google Scholar 

  3. C.A.E. Claros, L.C. Campanelli, A.M. Jorge, J.C. Leprêtre, C. Bolfarini, V. Roche, Corrosion behaviour of biomedical β-titanium alloys with the surface-modified by chemical etching and electrochemical methods. Corros. Sci. 188, 89 (2021)

    Google Scholar 

  4. G. Wang, J. Li, K. Lv, W. Zhang, X. Ding, G. Yang, X. Liu, X. Jiang, Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Sci. Rep. 6, 1–13 (2016)

    Google Scholar 

  5. M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 102, 844–862 (2019)

    Article  CAS  Google Scholar 

  6. Z. Trojanova, K. Hakmesova, Z. Drodz, J. Dzugan, R.Z. Valiev, P. Podany, The influence of severe plastic deformation on the thermal expansion of additively manufactured Ti6Al4V alloy. J. Mater. Res. Technol. 19, 3498–3506 (2022). https://doi.org/10.1016/j.jmrt.2022.06.097

    Article  CAS  Google Scholar 

  7. A. Thirugnanam, T.S.S. Kumar, U. Chakkingal, Tailoring the bioactivity of commercially pure titanium by grain refinement using groove pressing. Mater. Sci. Eng. C 30, 203–208 (2010)

    Article  CAS  Google Scholar 

  8. K.M. Agarwal, R.K. Tyagi, A. Singhal, D. Bhatia, Effect of ECAP on the mechanical properties of titanium and its alloys for biomedical applications. Mater. Sci. Energy Technol. 3, 921–927 (2020)

    CAS  Google Scholar 

  9. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants: a review. Prog. Mater. Sci. 54, 397–425 (2009)

    Article  CAS  Google Scholar 

  10. Q. Chen, G.A. Thouas, Metallic implant biomaterials. Mater. Sci. Eng. Rep. 87, 1–57 (2015). https://doi.org/10.1016/j.mser.2014.10.001

    Article  Google Scholar 

  11. N.T. Evans, F.B. Torstrick, C.S.D. Lee, K.M. Dupont, D.L. Safranski, W.A. Chang, A.E. Macedo, A.S.P. Lin, J.M. Boothby, D.C. Whittingslow, R.A. Carson, R.E. Guldberg, K. Gall, High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater. 13, 159–167 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. D. Wojtas, K. Wierzbanowski, R. Chulist, W.K. Pachla, M.B. Niemiec, A. Jarzebska, L. Maj, J. Kawalko, M.M. Wiackowska, M. Wronski, K. Sztwiertnia, Microstructure-strength relationship of ultrafine-grained titanium manufactured by unconventional severe plastic deformation process. J. Alloys Compd. 837, 96 (2020)

    Article  Google Scholar 

  13. R.Z. Valiev, E.V. Parfenov, L.V. Parfenova, Developing nanostructured metals for manufacturing of medical implants with improved design and biofunctionality. Mater. Trans. 60, 1356–1366 (2019)

    Article  CAS  Google Scholar 

  14. J.W. Park, Y.J. Kim, C.H. Park, D.H. Lee, Y.G. Ko, J.H. Jang, C.S. Lee, Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater. 5, 3272–3280 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. B.R. Sunil, Repetitive Corrugation and straightening of sheet metals. Mater. Manuf. Process. 30, 1262–1271 (2015)

    Article  CAS  Google Scholar 

  16. Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782–817 (2013)

    Article  CAS  Google Scholar 

  17. C.N. Elias, M.A. Meyers, R.Z. Valiev, S.N. Monteiro, Ultrafine grained titanium for biomedical applications: an overview of performance. J. Mater. Res. Technol. 2, 340–350 (2013)

    Article  CAS  Google Scholar 

  18. L. Zhou, G. Liu, Z. Han, K. Lu, Grain size effect on wear resistance of a nanostructured AISI52100 steel. Scr. Mater. 58, 445–448 (2008)

    Article  CAS  Google Scholar 

  19. P.M. Bhovi, D.C. Patil, S.A. Kori, K. Venkateswarlu, Y. Huang, T.G. Langdon, A comparison of repetitive corrugation and straightening and high-pressure torsion using an Al-Mg-Sc alloy. J. Mater. Res. Technol. 5, 353–359 (2016)

    Article  CAS  Google Scholar 

  20. A. Thirugnanam, T.S.S. Kumar, U. Chakkingal, Bioactivity enhancement of commercial pure titanium by chemical treatments. Trends Biomater. Artif. Organs. 23, 76–85 (2009)

    Google Scholar 

  21. K. Peng, Y. Zhang, L.L. Shaw, K.W. Qian, Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing. Acta Mater. 57, 5543–5553 (2009)

    Article  CAS  Google Scholar 

  22. V. Rajinikanth, G. Arora, N. Narasaiah, K. Venkateswarlu, Effect of repetitive corrugation and straightening on Al and Al-025Sc alloy. Mater. Lett. 62, 301–304 (2008)

    Article  CAS  Google Scholar 

  23. K. Kalantari, B. Saleh, T.J. Webster, Biological applications of severely plastically deformed nano-grained medical devices: A review. Nanomaterials 11, 1–24 (2021)

    Article  Google Scholar 

  24. J. Huang, Y.T. Zhu, D.J. Alexander, X. Liao, T.C. Lowe, R.J. Asaro, Development of repetitive corrugation and straightening. Mater. Sci. Eng. A 371, 35–39 (2004)

    Article  Google Scholar 

  25. Y.J. Manjunath, H.P. Thirthaprasada, A. Chandrashekar, A.R. Kaladgi, V. Mohanavel, A. Afzal, M.C. Manjunatha, D. Basheer, Tensile and wear properties of repetitive corrugation and straightened Al 2024 alloy: An experimental and RSM approach. Mater. Res. Express. 8, 89 (2021)

    Article  Google Scholar 

  26. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, A. Yanagida, Severe plastic deformation (SPD) processes for metals. CIRP Ann. Manuf. Technol. 57, 716–735 (2008). https://doi.org/10.1016/j.cirp.2008.09.005

    Article  Google Scholar 

  27. G.G. Elizalde, M. Ezequiel, I.A. Figueroa, J.M. Cabrera, C. Braham, Microstructural evolution and mechanical behavior corrugation and straightening. Metals 10, 489 (2020). https://doi.org/10.3390/met10040489

    Article  CAS  Google Scholar 

  28. J.Y. Huang, Y.T. Zhu, H. Jiang, T.C. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49, 1497–1505 (2001). https://doi.org/10.1016/S1359-6454(01)00069-6

    Article  CAS  Google Scholar 

  29. S.C. Pandey, M.A. Joseph, M.S. Pradeep, K. Raghavendra, V.R. Ranganath, K. Venkateswarlu, T.G. Langdon, A theoretical and experimental evaluation of repetitive corrugation and straightening: Application to Al-Cu and Al-Cu-Sc alloys. Mater. Sci. Eng. A 534, 282–287 (2012). https://doi.org/10.1016/j.msea.2011.11.070

    Article  CAS  Google Scholar 

  30. D. Shechtman, D.G. Brandon, Orientation dependent slip in polycrystalline titanium. J. Mater. Sci. 8, 1233–1237 (1973). https://doi.org/10.1007/BF00549337

    Article  CAS  Google Scholar 

  31. A. Bhardwaj, V. Mudaliar, N. Gohil, A.K. Gupta, S.S.S. Kumar, Evolution of microstructure and mechanical properties of Ti6Al4V alloy by multiple passes of constrained groove pressing at elevated temperature. J. Mater. Process. Technol. 288, 116891 (2021)

    Article  CAS  Google Scholar 

  32. P.C. Zhao, G.J. Yuan, R.Z. Wang, B. Guan, Y.F. Jia, X.C. Zhang, S.T. Tu, Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF. J. Mater. Sci. Technol. 83, 196–207 (2021)

    Article  CAS  Google Scholar 

  33. I.P. Semenova, A.V. Polyakov, G.I. Raab, T.C. Lowe, R.Z. Valiev, Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform. J. Mater. Sci. 47, 7777–7781 (2012)

    Article  CAS  Google Scholar 

  34. Y. Sheng, H. Yang, W. Ma, X. Jiang, Interaction of dislocations and cracks in grains based on discrete dislocations. Int. J. Fract. 239, 135–147 (2023)

    Article  Google Scholar 

  35. H. Mughrabi, Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth. Philos. Trans. R. Soc. A 373, 788 (2015)

    Article  Google Scholar 

  36. S. Fintová, P. Dlhý, K. Mertová, Z. Chlup, M. Duchek, R. Procházka, P. Hutař, Fatigue properties of UFG Ti grade 2 dental implant vs conventionally tested smooth specimens. J. Mech. Behav. Biomed. Mater. 123, 104715 (2021)

    Article  PubMed  Google Scholar 

  37. K.Y. Law, Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. J. Phys. Chem. Lett. 5(4), 686 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. G. Balasundaram, T.J. Webster, A perspective on nanophase materials for orthopedic implant applications. J. Mater. Chem. 16(38), 3737–3745 (2006)

    Article  CAS  Google Scholar 

  39. S. Kligman, Z. Ren, C.H. Chung, M.A. Perillo, Y.C. Chang, H. Koo, Z. Zheng, C. Li, The impact of dental implant surface modifications on osseointegration and biofilm formation. J. Clin. Med. 10, 8 (2021)

    Article  Google Scholar 

  40. S. Baek, M. Shin, J. Moon, H.S. Jung, S.A. Lee, W. Hwang, J.T. Yeom, S.K. Hahn, H.S. Kim, Superior pre-osteoblast cell response of etched ultrafine-grained titanium with a controlled crystallographic orientation. Sci. Rep. 7, 44213 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  41. B.R. Sunil, A. Thirugnanam, U. Chakkingal, T.S.S. Kumar, Nano and ultra fine grained metallic biomaterials by severe plastic deformation techniques. Mater. Technol. 31(13), 743–755 (2016)

    Article  Google Scholar 

  42. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  43. E. Gemelli, C.X. Resende, G.D.A. Soares, Nucleation and growth of octacalcium phosphate on treated titanium by immersion in a simplified simulated body fluid. J. Mater. Sci. Mater. Med. 21(2), 763–7712 (2010)

    Google Scholar 

  44. J.L. Brash, T.A. Horbett, R.A. Latour, P. Tengvall, The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater. 94, 11–24 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Y. Gu, R. Huang, Y. Hao, Review on grain refinement of metallic materials to regulate cellular behavior. Metals 12, 829 (2022)

    Article  CAS  Google Scholar 

  46. S. Chen, Y. Guo, R. Liu, S. Wu, J. Fang, B. Huang, Z. Li, Z. Chen, Z. Chen, Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids Surf. B 164, 58–69 (2018)

    Article  CAS  Google Scholar 

  47. M. Weber, H. Steinle, S. Golombek, L. Hann, C. Schlensak, H.P. Wendel, M.A. Adali, Blood-contacting biomaterials: in vitro evaluation of the hemocompatibility. Front. Bioeng. Biotechnol. 6, 99 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  48. T. Kaur, A. Thirugnanam, Effect of porous activated charcoal reinforcement on mechanical and in-vitro biological properties of polyvinyl alcohol composite scaffolds. J. Mater. Sci. Technol. 33, 734–743 (2017). https://doi.org/10.1016/j.jmst.2016.06.020

    Article  CAS  Google Scholar 

  49. N. Tsunoda, K. Kokubo, K. Sakai, M. Fukuda, M. Miyazaki, T. Hiyoshi, Surface roughness of cellulose hollow fiber dialysis membranes and platelet adhesion. ASAIO J. 45, 418–423 (1999)

    Article  CAS  PubMed  Google Scholar 

  50. X.H. Liu, L. Wu, H.J. Ai, Y. Han, Y. Hu, Cytocompatibility and early osseointegration of nanoTiO2-modified Ti-24 Nb-4 Zr-79 Sn surfaces. Mater. Sci. Eng. C 48, 256–262 (2015)

    Article  CAS  Google Scholar 

  51. Y. Gu, R. Huang, Y. Hao, Review on grain refinement of metallic materials to regulate cellular behavior. Metals. 12(5), 829 (2022)

    Article  CAS  Google Scholar 

  52. B. Majhy, P. Priyadarshini, A.K. Sen, Effect of surface energy and roughness on cell adhesion and growth—facile surface modification for enhanced cell culture. RSC Adv. 11, 15467–15476 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Ansari, K. Ito, S. Hofmann, Alkaline phosphatase activity of serum affects osteogenic differentiation cultures. ACS Omega 7(15), 12724–12733 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R.M.F. da Costa e Silva, I.M.A. Diniz, N.A. Gomes, G.J.B. Silva, J.M. da Fonteferreira, R.L. de Freitas Filho, E.T.F. Freitas, D.A. Martins, R.Z. Domingues, Â.L. Andrade, Equisetum hyemale-derived unprecedented bioactive composite for hard and soft tissues engineering. Sci. Rep. 12, 13425 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

All the authors acknowledge Mishra Dhatu Nigam Limited, Hyderabad, India for providing the commercially pure titanium used in this study.

Funding

The authors like to acknowledge Science and Engineering Research Board (SERB), Department of Science and Technology (DST), INDIA for providing financial support for carrying out this research with SERB sanction order no. and date (CRG/2022/008787 dated 08/02/2023).

Author information

Authors and Affiliations

Authors

Contributions

Moumita Ghosh contributed toward writing- original draft, data curation, investigation, and formal analysis. Arunachalam Thirugnanam contributed toward conceptualisation, methodology, validation, writing-review & editing, and supervision.

Corresponding author

Correspondence to Arunachalam Thirugnanam.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

None of the studies reported in the work involved human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 615 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Thirugnanam, A. Effect of grain refinement on Cp-Ti sheets via repetitive corrugation and straightening technique for implant applications. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01330-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01330-8

Keywords

Navigation