Skip to main content
Log in

Influence of Nozzle Temperature on Gas Emissions and Mechanical Properties in Material Extrusion-based Additive Manufacturing of Super Engineering Plastics

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

Gas emissions pose significant environmental and health concerns in thermal processes involving thermoplastic polymers. This issue also extends to material extrusion (MEX) additive manufacturing (AM), which is a thermal process. Therefore, it is crucial to examine gas emissions during MEX AM. This study focused on super engineering plastics (SEPs) such as polyetheretherketone, polysulfone, and polyetherimide. A portable emission-measuring device was employed to analyze total volatile organic compounds (TVOCs) and formaldehyde (HCHO) emitted during MEX AM at various nozzle temperatures. Additionally, the anisotropy of tensile strengths in the SEP specimens fabricated in the longitudinal and transverse deposition directions was evaluated. Overall, the SEPs emitted TVOCs and HCHO within the range from not detected (N/D) to 0.595 mg/m3 and from N/D to 0.139 mg/m3, respectively, based on the nozzle temperature during MEX AM. Moreover, the tensile strengths varied from 59.0 to 83.4 MPa in the longitudinal deposition direction and from 19.2 to 55.7 MPa in the transverse deposition direction. Lower nozzle temperatures not only resulted in reduced gas emissions but also led to lower tensile strength in all the SEPs. However, the strategic use of longitudinal deposition can mitigate the reduction in tensile strength. To demonstrate this, a case study involving the fabrication of a Warren truss bridge was presented. This study provides guidelines for the deposition strategy in MEX using SEPs under AM conditions, aiming to minimize gas emissions while maintaining a tensile strength ranging from 81.1% to 88.7% of the bulk specimen strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are included within this article. Additional data related to this study will be available upon reasonable request.

References

  1. Aprilia, A., Wu, N., & Zhou, W. (2022). Repair and restoration of engineering components by laser directed energy deposition. Materials Today: Proceedings, 70, 206–211. https://doi.org/10.1016/j.matpr.2022.09.022

    Article  Google Scholar 

  2. Park, S. J., Lee, J. E., Park, J., Lee, N.-K., Son, Y., & Park, S.-H. (2021). High-temperature 3D printing of polyetheretherketone products: Perspective on industrial manufacturing applications of super engineering plastics. Materials & Design, 211, 110163. https://doi.org/10.1016/j.matdes.2021.110163

    Article  Google Scholar 

  3. Moon, S. K., Tan, Y. E., Hwang, J., & Yoon, Y.-J. (2014). Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 223–228. https://doi.org/10.1007/s40684-014-0028-x

    Article  Google Scholar 

  4. Park, S. J., Lee, J., Choi, J. W., Yang, J. H., Lee, J. H., Lee, J., Son, Y., Ha, C. W., Lee, N.-K., Kim, S. H., & Park, S.-H. (2021). Additive manufacturing of the core template for the fabrication of an artificial blood vessel: The relationship between the extruded deposition diameter and the filament/nozzle transition ratio. Materials Science and Engineering: C, 118, 111406. https://doi.org/10.1016/j.msec.2020.111406

    Article  Google Scholar 

  5. Placone, J. K., & Engler, A. J. (2018). Recent advances in extrusion-based 3D printing for biomedical applications. Advanced Healthcare Materials, 7(8), 1701161. https://doi.org/10.1002/adhm.201701161

    Article  Google Scholar 

  6. Kuschmitz, S., Schirp, A., Busse, J., Watschke, H., Schirp, C., & Vietor, T. (2021). Development and processing of continuous flax and carbon fiber-reinforced thermoplastic composites by a modified material extrusion process. Materials, 14(9), 2332. https://doi.org/10.3390/ma14092332

    Article  Google Scholar 

  7. Vakharia, V. S., Leonard, H., Singh, M., & Halbig, M. C. (2023). Multi-material additive manufacturing of high temperature polyetherimide (PEI)–based polymer systems for lightweight aerospace applications. Polymers, 15(3), 561. https://doi.org/10.3390/polym15030561

    Article  Google Scholar 

  8. Kim, K., & Baek, S. Y. (2023). Influence of counterpart material on fretting wear of FDM printed polylactic acid plates. International Journal of Precision Engineering and Manufacturing, 24(10), 1855–1863. https://doi.org/10.1007/s12541-023-00806-7

    Article  Google Scholar 

  9. Jang, J.-W., Min, K.-E., Kim, C., Shin, J., Lee, J., & Yi, S. (2023). Review: Scaffold characteristics, fabrication methods, and biomaterials for the bone tissue engineering. International Journal of Precision Engineering and Manufacturing, 24(3), 511–529. https://doi.org/10.1007/s12541-022-00755-7

    Article  Google Scholar 

  10. Jerin, W. R., Park, S. J., & Moon, S. K. (2023). A design optimization framework for 3D printed lattice structures. International Journal of Precision Engineering and Manufacturing-Smart Technology, 1(2), 145–156. https://doi.org/10.57062/ijpem-st.2023.0059

    Article  Google Scholar 

  11. So, S.-Y., Park, S.-H., Park, S.-H., Gwak, G.-M., & Lyu, S.-K. (2023). Additive-manufactured flexible triboelectric sensor based on porous PDMS sponge for highly detecting joint movements. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(1), 97–107. https://doi.org/10.1007/s40684-022-00432-0

    Article  Google Scholar 

  12. Davis, A. Y., Zhang, Q., Wong, J. P. S., Weber, R. J., & Black, M. S. (2019). Characterization of volatile organic compound emissions from consumer level material extrusion 3D printers. Building and Environment, 160, 106209. https://doi.org/10.1016/j.buildenv.2019.106209

    Article  Google Scholar 

  13. Park, S. J., Lee, J. E., Lee, H. B., Park, J., Lee, N.-K., Son, Y., & Park, S.-H. (2020). 3D printing of bio-based polycarbonate and its potential applications in ecofriendly indoor manufacturing. Additive Manufacturing, 31, 100974. https://doi.org/10.1016/j.addma.2019.100974

    Article  Google Scholar 

  14. Du Preez, S., Johnson, A., LeBouf, R. F., Linde, S. J. L., Stefaniak, A. B., & Du Plessis, J. (2018). Exposures during industrial 3-D printing and post-processing tasks. Rapid Prototyping Journal, 24(5), 865–871. https://doi.org/10.1108/RPJ-03-2017-0050

    Article  Google Scholar 

  15. Ding, S., Ng, B. F., Shang, X., Liu, H., Lu, X., & Wan, M. P. (2019). The characteristics and formation mechanisms of emissions from thermal decomposition of 3D printer polymer filaments. Science of The Total Environment, 692, 984–994. https://doi.org/10.1016/j.scitotenv.2019.07.257

    Article  Google Scholar 

  16. Väisänen, A. J. K., Alonen, L., Ylönen, S., Lyijynen, I., & Hyttinen, M. (2021). The impact of thermal reprocessing of 3D printable polymers on their mechanical performance and airborne pollutant profiles. Journal of Polymer Research, 28(11), 436. https://doi.org/10.1007/s10965-021-02723-7

    Article  Google Scholar 

  17. Steinle, P. (2016). Characterization of emissions from a desktop 3D printer and indoor air measurements in office settings. Journal of Occupational and Environmental Hygiene, 13(2), 121–132. https://doi.org/10.1080/15459624.2015.1091957

    Article  MathSciNet  Google Scholar 

  18. Monserrat, L. (2016). OEHHA Acute, 8-hour and Chronic Reference Exposure Level (REL) Summary. OEHHA. Text. Retrieved January 15, 2024, from https://oehha.ca.gov/air/general-info/oehha-acute-8-hour-and-chronic-reference-exposure-level-rel-summary. Accessed 4 Jan 2024.

  19. Kim, B., Shin, J. H., Kim, H. P., Jo, M. S., Kim, H. S., Lee, J. S., Lee, H. K., Kwon, H. C., Han, SGu., Kang, N., Gulumian, M., Bello, D., & Yu, I. J. (2022). Assessment and mitigation of exposure of 3-D printer emissions. Frontiers in Toxicology, 3, 817454. https://doi.org/10.3389/ftox.2021.817454

    Article  Google Scholar 

  20. Romanowski, H., Bierkandt, F. S., Luch, A., & Laux, P. (2023). Summary and derived risk assessment of 3D printing emission studies. Atmospheric Environment, 294, 119501. https://doi.org/10.1016/j.atmosenv.2022.119501

    Article  Google Scholar 

  21. Azimi, P., Zhao, D., Pouzet, C., Crain, N. E., & Stephens, B. (2016). Emissions of ultrafine particles and volatile organic compounds from commercially available desktop three-dimensional printers with multiple filaments. Environmental Science & Technology, 50(3), 1260–1268. https://doi.org/10.1021/acs.est.5b04983

    Article  Google Scholar 

  22. Deng, Y., Cao, S.-J., Chen, A., & Guo, Y. (2016). The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Building and Environment, 104, 311–319. https://doi.org/10.1016/j.buildenv.2016.05.021

    Article  Google Scholar 

  23. Wang, P., Zou, B., Ding, S., Huang, C., Shi, Z., Ma, Y., & Yao, P. (2020). Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Composites Part B: Engineering, 198, 108175. https://doi.org/10.1016/j.compositesb.2020.108175

    Article  Google Scholar 

  24. Zaldivar, R. J., Witkin, D. B., McLouth, T., Patel, D. N., Schmitt, K., & Nokes, J. P. (2017). Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material. Additive Manufacturing, 13, 71–80. https://doi.org/10.1016/j.addma.2016.11.007

    Article  Google Scholar 

  25. Francis, J. N., Banerjee, I., Chugh, A., & Singh, J. (2022). Additive manufacturing of polyetheretherketone and its composites: A review. Polymer Composites, 43(9), 5802–5819. https://doi.org/10.1002/pc.26961

    Article  Google Scholar 

  26. Abbott, A., Gibson, T., Tandon, G. P., Hu, L., Avakian, R., Baur, J., & Koerner, H. (2021). Melt extrusion and additive manufacturing of a thermosetting polyimide. Additive Manufacturing, 37, 101636. https://doi.org/10.1016/j.addma.2020.101636

    Article  Google Scholar 

  27. Challa, B. T., Gummadi, S. K., Elhattab, K., Ahlstrom, J., & Sikder, P. (2022). In-house processing of 3D printable polyetheretherketone (PEEK) filaments and the effect of fused deposition modeling parameters on 3D-printed PEEK structures. The International Journal of Advanced Manufacturing Technology, 121(3–4), 1675–1688. https://doi.org/10.1007/s00170-022-09360-4

    Article  Google Scholar 

  28. Schwitalla, A. D., Abou-Emara, M., Spintig, T., Lackmann, J., & Müller, W. D. (2015). Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. Journal of Biomechanics, 48(1), 1–7. https://doi.org/10.1016/j.jbiomech.2014.11.017

    Article  Google Scholar 

  29. Yu, L., Zhao, D., & Wang, W. (2019). Mechanical properties and long-term durability of recycled polysulfone plastic. Waste Management, 84, 402–412. https://doi.org/10.1016/j.wasman.2018.11.025

    Article  Google Scholar 

  30. Fischer, M., & Schöppner, V. (2017). Fatigue behavior of FDM parts manufactured with ultem 9085. JOM Journal of the Minerals Metals and Materials Society, 69(3), 563–568. https://doi.org/10.1007/s11837-016-2197-2

    Article  Google Scholar 

  31. Schawe, J. E. K., & Wrana, C. (2020). Competition between structural relaxation and crystallization in the glass transition range of random copolymers. Polymers, 12(8), 1778. https://doi.org/10.3390/polym12081778

    Article  Google Scholar 

  32. Qu, H., Zhang, W., Li, Z., Hou, L., Li, G., Fuh, J. Y., & Wu, W. (2022). Influence of thermal processing conditions on mechanical and material properties of 3D printed thin-structures using PEEK material. International Journal of Precision Engineering and Manufacturing, 23(6), 689–699. https://doi.org/10.1007/s12541-022-00650-1

    Article  Google Scholar 

  33. Park, J. H., Koo, M. S., Cho, S. H., & Lyu, M.-Y. (2017). Comparison of thermal and optical properties and flowability of fossil-based and bio-based polycarbonate. Macromolecular Research, 25(11), 1135–1144. https://doi.org/10.1007/s13233-017-5153-2

    Article  Google Scholar 

  34. Vrabič-Brodnjak, U., Gregor-Svetec, D., Stankovic Elesini, U., Urbas, R., & Leskovsek, M. (2019). The Influence of cardboard dust on structural, morphological and mechanical properties of biocomposite PLA and HDPE filaments for 3D printing. Acta Chimica Slovenica, 66. https://doi.org/10.17344/acsi.2019.5025

  35. Gülsoy, H., & Tasdemir, M. (2007). The Effect of bronze particles on the physical and mechanical properties of acrylonitrile-butadiene-styrene copolymer. Polymer-Plastics Technology and Engineering, 46, 789–793. https://doi.org/10.1080/03602550701274185

    Article  Google Scholar 

  36. Zhu, M.-X., Song, H.-G., Yu, Q.-C., Chen, J.-M., & Zhang, H.-Y. (2020). Machine-learning-driven discovery of polymers molecular structures with high thermal conductivity. International Journal of Heat and Mass Transfer, 162, 120381. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120381

    Article  Google Scholar 

  37. Sydlik, S. A., Chen, Z., & Swager, T. M. (2011). Triptycene Polyimides: Soluble polymers with high thermal stability and low refractive indices. Macromolecules, 44(4), 976–980. https://doi.org/10.1021/ma101333p

    Article  Google Scholar 

  38. Liu, J., & Yang, R. (2012). Length-dependent thermal conductivity of single extended polymer chains. Physical Review B, 86(10), 104307. https://doi.org/10.1103/PhysRevB.86.104307

    Article  Google Scholar 

  39. Watschke, H., Waalkes, L., Schumacher, C., & Vietor, T. (2018). Development of novel test specimens for characterization of multi-material parts manufactured by material extrusion. Applied Sciences, 8(8), 1220. https://doi.org/10.3390/app8081220

    Article  Google Scholar 

  40. García, J. M., García, F. C., Serna, F., & de la Peña, J. L. (2010). High-performance aromatic polyamides. Progress in Polymer Science, 35(5), 623–686. https://doi.org/10.1016/j.progpolymsci.2009.09.002

    Article  Google Scholar 

  41. Wojnowski, W., Kalinowska, K., Majchrzak, T., & Zabiegała, B. (2022). Real-time monitoring of the emission of volatile organic compounds from polylactide 3D printing filaments. Science of The Total Environment, 805, 150181. https://doi.org/10.1016/j.scitotenv.2021.150181

    Article  Google Scholar 

  42. Ahn, S., Montero, M., Odell, D., Roundy, S., & Wright, P. K. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8(4), 248–257. https://doi.org/10.1108/13552540210441166

    Article  Google Scholar 

  43. Park, S. J., Lee, J. E., Park, J. H., Lee, N. K., Lyu, M.-Y., Park, K., Koo, M. S., Cho, S. H., Son, Y., & Park, S.-H. (2018). Enhanced solubility of the support in an FDM-based 3D printed structure using hydrogen peroxide under ultrasonication. Advances in Materials Science and Engineering, 2018, 1–10. https://doi.org/10.1155/2018/3018761

    Article  Google Scholar 

  44. Wang, P., Zou, B., Ding, S., Li, L., & Huang, C. (2021). Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chinese Journal of Aeronautics, 34(9), 236–246. https://doi.org/10.1016/j.cja.2020.05.040

    Article  Google Scholar 

  45. Park, S. J., Park, S. J., Son, Y., & Ahn, I. H. (2022). Reducing anisotropy of a part fabricated by material extrusion via warm isostatic pressure (WIP) process. Additive Manufacturing, 55, 102841. https://doi.org/10.1016/j.addma.2022.102841

    Article  Google Scholar 

  46. Niu, Y., Zheng, S., Song, P., Zhang, X., & Wang, C. (2021). Mechanical and thermal properties of PEEK composites by incorporating inorganic particles modified phosphates. Composites Part B: Engineering, 212, 108715. https://doi.org/10.1016/j.compositesb.2021.108715

    Article  Google Scholar 

  47. Zhansitov, A. A., Khashirova, S. Y., Slonov, A. L., Kurdanova, Z. I., Shabaev, A. S., Khashirov, A. A., & Mikitaev, A. K. (2017). Development of technology of polysulfone production for 3D printing. High Performance Polymers, 29(6), 724–729. https://doi.org/10.1177/0954008317704500

    Article  Google Scholar 

  48. Chueca De Bruijn, A., Gómez-Gras, G., & Pérez, M. A. (2020). Mechanical study on the impact of an effective solvent support-removal methodology for FDM ultem 9085 parts. Polymer Testing, 85, 106433. https://doi.org/10.1016/j.polymertesting.2020.106433

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Institute of Industrial Technology (KITECH) internal project (1711175147, Development of 3D printing commercialization technology for military parts and demonstration support technology), and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00213269).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Son or Suk-Hee Park.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.J., Lee, J.S., Lee, J.E. et al. Influence of Nozzle Temperature on Gas Emissions and Mechanical Properties in Material Extrusion-based Additive Manufacturing of Super Engineering Plastics. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-024-00614-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-024-00614-y

Keywords

Navigation