Skip to main content
Log in

Chloramphenicol-imprinted polychitosan bounded with carbon dots as fluorescent sensor, dispersive sorbent, and drug carrier

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Chitosan, an abundant natural polysaccharide, was conjugated with carbon dots (CDs) and self-polymerized with chloramphenicol (CAP) templates to synthesize CD-incorporated and molecularly CAP-imprinted polychitosan (CD-MIC). The CD-MIC was used for fluorescent sensing, dispersive sorption, and dosage release of CAP at different pH levels. The sphere of action mechanism, approved by emission and excitation fluorescence, UV–Vis absorption, and fluorescence lifetime measurements, regulated the fluorescence static quenching. By the Perrin model, the quenching extent was linearly correlated to CAP within 0.17 − 33.2 μM (LOD = 37 nM) at pH 7.0. With an imprinting factor of 3.1, the CD-MIC was more selective for CAP than CD, although it was less sensitive to CAP. The recoveries of 5.0 μM CAP from milk matrix were 95% (RSD = 2.3%) for CD-MIC probes and 62% (RSD = 4.5%) for CD. The Langmuir and pseudo-second-order models preferably described the isothermal and kinetic sorptions of CAP into the imprinted cavities in CD-MICs, respectively. The Weber − Morris kinetic model showed three stages involved in intraparticle diffusion, which was pH-dependent and gradually arduous at the later stage, and showed external diffusion partly engaged in the diffusion mechanism. The 20 − 70% of CAP formulated in CAP-embedded CD-MICs were released in 8 − 48 h. The release percentage was lower at pH 7.0 than at pH 5.0 and 9.0, but the equilibrium time was shorter. At pH 7.0, the release percentage reached 45% at 10 min and slowly increased to 51% at 24 h.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this supplementary information file.

References

  1. Rathod NB, Bangar SP, Šimat V, Ozogul F (2023) Chitosan, and gelatine biopolymer-based active/biodegradable packaging for the preservation of fish and fishery products. Int J Food Sci Technol 58:854–861. https://doi.org/10.1111/ijfs.16038

    Article  CAS  Google Scholar 

  2. Sheth Y, Dharaskar S, Khalid M, Sonawane S (2021) An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: a review. Sustain Energy Technol Assess 43:400951. https://doi.org/10.1016/j.seta.2020.100951

    Article  Google Scholar 

  3. Bagheri AR, Aramesh N, Lee HK (2022) Chitosan- and/or cellulose-based materials in analytical extraction processes: a review. Trends Analyt Chem 157:116770. https://doi.org/10.1016/j.trac.2022.116770

    Article  CAS  Google Scholar 

  4. Chouhan D, Mandal P (2021) Applications of chitosan and chitosan based metallic nanoparticles in agrosciences−a review. Int J Biol Macromol 166:1554–1569. https://doi.org/10.1016/j.ijbiomac.2020.11.035

    Article  CAS  PubMed  Google Scholar 

  5. Meng Q, Zhong S, Wang J, Gao Y, Cui X (2023) Advances in chitosan-based microcapsules and their applications. Carbohydr Polym 300:120265. https://doi.org/10.1016/j.carbpol.2022.120265

    Article  CAS  PubMed  Google Scholar 

  6. Elkomy MH, Ali AA, Eid HM (2022) Chitosan on the surface of nanoparticles for enhanced drug delivery: a comprehensive review. J Control Release 351:923–940. https://doi.org/10.1016/j.jconrel.2022.10.005

    Article  CAS  PubMed  Google Scholar 

  7. Lv S, Liang S, Zuo J, Zhang S, Wei D (2022) Preparation and application of chitosan-based fluorescent probes. Analyst 147:4657–4673. https://doi.org/10.1039/d2an01070d

    Article  CAS  PubMed  Google Scholar 

  8. Rahmani E, Pourmadadi M, Ghorbanian SA, Yazdian F, Rashedi H, Navaee M (2022) Preparation of a pH-responsive chitosan-montmorillonite-nitrogen-doped carbon quantum dots nanocarrier for attenuating doxorubicin limitations in cancer therapy. Eng Life Sci 22:634–649. https://doi.org/10.1002/elsc.202200016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kazeminava F, Javanbakht S, Nouri M, Gholizadeh P, Nezhad-Mokhtari P, Ganbarov K, Tanomand A, Kafil HS (2022) Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing. J Med Biol Eng 16:36. https://doi.org/10.1186/s13036-022-00318-4

    Article  CAS  Google Scholar 

  10. Wang F, Chen N, Li J, Xu Z (2022) Chitosan microspheres loaded with 5Fu and polydopamine-carbon dots for enhancing chemo-photothermal therapy. Mater Lett 329:133167. https://doi.org/10.1016/j.matlet.2022.133167

    Article  CAS  Google Scholar 

  11. Luo Q, Huang X, Luo Y, Yuan H, Ren T, Li X, Xu D, Guo X, Wu Y (2021) Fluorescent chitosan-based hydrogel incorporating titanate and cellulose nanofibers modified with carbon dots for adsorption and detection of Cr(VI). Chem Eng J 407:127050. https://doi.org/10.1016/j.cej.2020.127050

    Article  CAS  Google Scholar 

  12. Mohammadi S, Mohammadi S, Salimi A (2021) A 3D hydrogel based on chitosan and carbon dots for sensitive fluorescence detection of microRNA-21 in breast cancer cells. Talanta 224:121895. https://doi.org/10.1016/j.talanta.2020.121895

    Article  CAS  PubMed  Google Scholar 

  13. Trung LG, Subedi S, Dahal B, Truong PL, Gwag JS, Tran NT, Nguyen MK (2022) Highly efficient fluorescent probes from chitosan-based amino-functional carbon dots for the selective detection of Cu2+ traces. Mater Chem Phys 291:126772. https://doi.org/10.1016/j.matchemphys.2022.126772

    Article  CAS  Google Scholar 

  14. Bǎrǎian A-I, Iacob B-C, Bodoki AE, Bodoki E (2022) In vivo applications of molecularly imprinted polymers for drug delivery: a pharmaceutical perspective. Int J Mol Sci 23:14071. https://doi.org/10.3390/ijms232214071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kadhem AJ, Gentile GJ, de Cortalezzi MMF (2021) Molecularly imprinted polymers (MIPs) in sensors for environmental and biomedical applications: a review. Molecules 26:6233. https://doi.org/10.3390/molecules26206233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu L, Huang Y-A, Zhu Q-J, Ye C (2015) Chitosan in molecularly-imprinted polymers: current and future prospects. Int J Mol Sci 16:18328–18347. https://doi.org/10.3390/ijms160818328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li F, Lian Z, Song C, Ge C (2021) Release of florfenicol in seawater using chitosan-based molecularly imprinted microspheres as drug carriers. Mar Pollut Bull 173:113068. https://doi.org/10.1016/j.marpolbul.2021.113068

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Zhang W, Yang N, Chen C, Zhang M (2018) Chitosan-based surface molecularly imprinted polymer microspheres for sustained release of sinomenine hydrochloride in aqueous media. Appl Biochem Biotechnol 185:370–384. https://doi.org/10.1007/s12010-017-2658-2

    Article  CAS  PubMed  Google Scholar 

  19. Zheng X-F, Lian Q, Yang H, Wang X (2016) Surface molecularly imprinted polymer of chitosan grafted poly(methyl methacrylate) for 5-fluorouracil and controlled release. Sci Rep 6:21409. https://doi.org/10.1038/srep21409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anirudhan TS, Nair AS, Parvathy J (2016) Extended wear therapeutic contact lens fabricated from timolol imprinted carboxymethyl chitosan-g-hydroxy ethyl methacrylate-g-poly acrylamide as a onetime medication for glaucoma. Eur J Pharm Biopharm 109:61–71. https://doi.org/10.1016/j.ejpb.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  21. Zouaoui F, Bourouina-Bacha S, Bourouina M, Jaffrezic-Renault N, Zine N, Errachid A (2020) Electrochemical sensors based on molecularly imprinted chitosan: a review. Trends Anal Chem 130:115982. https://doi.org/10.1016/j.trac.2020.115982

    Article  CAS  Google Scholar 

  22. Mabrouk M, Hammad SF, Abdella AA, Mansour FR (2020) Chitosan-based molecular imprinted polymer for extraction and spectrophotometric determination of ketorolac in human plasma. Spectrochim Acta A 241:118668. https://doi.org/10.1016/j.saa.2020.118668

    Article  CAS  Google Scholar 

  23. Beiki T, Najafpour-Darzi G, Mohammadi M, Shakeri M, Boukherroub R (2023) Fabrication of a novel electrochemical biosensor based on a molecular imprinted polymer-aptamer hybrid receptor for lysozyme determination. Anal Bioanal Chem 415:899–911. https://doi.org/10.1007/s00216-022-04487-5

    Article  CAS  PubMed  Google Scholar 

  24. Wu H, Zheng W, Jiang Y, Xu J, Qiu F (2021) Construction of a selective non-enzymatic electrochemical sensor based on hollow nickel nanospheres/carbon dots–chitosan and molecularly imprinted polymer film for the detection of glucose. New J Chem 45:21676–21683. https://doi.org/10.1039/d1nj03864h

    Article  CAS  Google Scholar 

  25. Zheng W, Wu H, Jiang Y, Xu J, Li X, Zhang W, Qiu F (2018) A molecularly-imprinted-electrochemical-sensor modified with nanocarbon-dots with high sensitivity and selectivity for rapid determination of glucose. Anal Biochem 555:42–49. https://doi.org/10.1016/j.ab.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  26. Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X (2017) A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron 98:299–304. https://doi.org/10.1016/j.bios.2017.06.036

    Article  CAS  PubMed  Google Scholar 

  27. Jiao Z, Li J, Mo L, Liang J, Fan H (2018) A molecularly imprinted chitosan doped with carbon quantum dots for fluorometric determination of perfluorooctane sulfonate. Microchim Acta 185:473. https://doi.org/10.1007/s00604-018-2996-y

    Article  CAS  Google Scholar 

  28. Wongtavatchai J, McLean LG, Ramos F, Arnold D (2004) WHO food additives series 53: chloramphenicol. JECFA (WHO: Joint FAO/WHO Expert Committee on Food Additives), IPCS (International Programme on Chemical Safety) INCHEM, pp 7–85

  29. EFSA Contam Panel (EFSA Panel on Contaminants in the Food Chain) (2014) scientific opinion on chloramphenicol in food and feed. EFSA J 12:3907. https://doi.org/10.2903/j.efsa.2014.3907

    Article  CAS  Google Scholar 

  30. Chen C-M, Lai C-H, Wu H-J, Wu L-T (2017) Genetic characteristic of class 1 integrons in proteus mirabilis isolates from urine samples. Biomedicine 7:12–17. https://doi.org/10.1051/bmdcn/2017070202

    Article  Google Scholar 

  31. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sens 4:1732–1748. https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  PubMed  Google Scholar 

  32. Murata S, Tachiya M (1992) Refined perrin equation for the analysis of fluorescence quenching by electro-transfer. Chem Phys Lett 194:347–350. https://doi.org/10.1016/0009-2614(92)86062-M

    Article  CAS  Google Scholar 

  33. Delebecq E, Pascault J-P, Boutevin B, Ganachaud F (2012) On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem Rev 113:80–118. https://doi.org/10.1021/cr300195n

    Article  CAS  PubMed  Google Scholar 

  34. Zhu S, Song Y, Zhao X, Shao J, Zhang J, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  35. Li Y, Natakorn S, Chen Y, Safar M, Cunningham M, Tian J, Li DD-U (2020) Investigations on average fluorescence lifetimes for visualizing multi-exponential decays. Front Phys 8:576862. https://doi.org/10.3389/fphy.2020.576862

    Article  Google Scholar 

  36. Amjadi M, Jalili R, Manzoori JL (2016) A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots. Luminescence 31:633–639. https://doi.org/10.1002/bio.3003

    Article  CAS  PubMed  Google Scholar 

  37. Garcinuño RM, Collado EJ, Paniagua G, Bravo JC, Fernández HP (2023) Assessment of molecularly imprinted polymers as selective solid-phase extraction sorbents for the detection of cloxacillin in drinking and river water. Polymers 15:4314. https://doi.org/10.3390/polym15214314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sahoo TR, Prelot B (2020) Chapter 7-Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology, in: B. Bonelli, F. S. Freyria, I. Rossetti, R. Sethi (Eds.), In Micro and Nano Technologies, Nanomaterials for the Detection and Removal of Wastewater Pollutants, Elsevier, pp. 161–222. ISBN 9780128184899, https://doi.org/10.1016/B978-0-12-818489-9.00007-4

  39. Singh M, Rayaz M, Arti R (2024) Isotherm and kinetic studies for sorption of Cr(VI) onto Prosopis cineraria leaf powder: a comparison of linear and non-linear regression analysis. Environ Prog Sustain Energy 43:e14259. https://doi.org/10.1002/ep.14259

    Article  CAS  Google Scholar 

  40. Belessi V, Romanos G, Boukos N, Lambropoulou D, Trapalis C (2009) Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. J Hazard Mater 170:836–844. https://doi.org/10.1016/j.jhazmat.2009.05.045

    Article  CAS  PubMed  Google Scholar 

  41. Wang XS, Zhou Y, Yiang Y, Sun C (2008) The removal of basic dyes from aqueous solutions using agricultural by-products. J Hazard Mater 157:374–385. https://doi.org/10.1016/j.jhazmat.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  42. Kumar A, Kumar S, Kumar S, Gupta DV (2007) Adsorption phenol and 4-nitrophenol on granular activated carbon in basal salt medium: equilibrium and kinetics. J Hazard Mater 147:155–166. https://doi.org/10.1016/j.jhazmat.2006.12.062

    Article  CAS  PubMed  Google Scholar 

  43. Hasani N, Selimi T, Mele A, Thaçi V, Halili J, Berisha A, Sadiku M (2022) Theoretical, equilibrium, kinetics and thermodynamic investigations of methylene blue adsorption onto lignite coal. Molecules 27:1856. https://doi.org/10.3390/molecules27061856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ogata H, Shibazaki T, Inoue T, Ejmima A (1979) Comparative studies on 8 dissolution methods using 21 commercial chloramphenicol tablets and a non-disintegrating benzoic acid tablet. J Pharm Sci 68:708–712. https://doi.org/10.1002/jps.2600680614

    Article  CAS  PubMed  Google Scholar 

  45. Tan Z, Xu H, Li G, Yang X, Choi MMF (2015) Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Spectrochim Acta A 149:615–620. https://doi.org/10.1016/j.saa.2015.04.109

    Article  CAS  Google Scholar 

  46. Jalili R, Khataee A (2020) Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food Chem Toxicol 146:111806. https://doi.org/10.1016/j.fct.2020.111806

    Article  CAS  PubMed  Google Scholar 

  47. Yue X, Wu C, Zhou Z, Fu L, Bai Y (2022) Fluorescent sensing of ciprofloxacin and chloramphenicol in milk samples via inner filter effect and photoinduced electron transfer based on nanosized rod-shaped Eu-MOF. Foods 11:3138. https://doi.org/10.3390/foods11193138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Q, Qi X, Chen H, Li J, Yang M, Liu J, Sun K, Li Z, Deng G (2022) Fluorescence determination of chloramphenicol in milk powder using carbon dot decorated silver metal–organic frameworks. Microchim Acta 189:272. https://doi.org/10.1007/s00604-022-05377-4

    Article  CAS  Google Scholar 

  49. Ning X, Mao C, Zhang J, Zhao L (2022) Fluorescence sensing of chloramphenicol based on oxidized single-walled carbon nanohorn/silicon quantum dots-aptamers. J Mol Struct 1269:133829. https://doi.org/10.1016/j.molstruc.2022.133829

    Article  CAS  Google Scholar 

  50. Wu X, Tang S, Zhao P, Tang K, Chen Y, Fu J, Zhou S, Yang Z-X, Zhang Z (2023) One-pot synthesis of ternary-emission molecularly imprinted fluorescence sensor based on metal–organic framework for visual detection of chloramphenicol. Food Chem 402:134256. https://doi.org/10.1016/j.foodchem.2022.134256

    Article  CAS  PubMed  Google Scholar 

  51. Cayuela A, Soriano ML, Carrillo-Carriónb C, Valcárcel M (2016) Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chem Commun 52:1311–1326. https://doi.org/10.1039/c5cc07754k

    Article  CAS  Google Scholar 

Download references

Funding

Support for this work by the Ministry of Science and Technology in Taiwan under Grant No. MOST–111–2113–M–039–007 and the China Medical University under Grant No. CMU111–MF–20 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Lian Chen.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6.16 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, WL., Ke, C. & Chen, JL. Chloramphenicol-imprinted polychitosan bounded with carbon dots as fluorescent sensor, dispersive sorbent, and drug carrier. Microchim Acta 191, 227 (2024). https://doi.org/10.1007/s00604-024-06324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06324-1

Keywords

Navigation