Skip to main content

Advertisement

Log in

Effect of Basalt and Steel Fibers on the Microstructure and Strength of Concrete with Desert Sand

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

There is a growing trend toward employing sustainable materials to address the drawbacks of traditional construction materials. This experimental study explores the utilization of basalt and steel fibers, both independently and in combination, alongside fly ash and desert sand. The findings reveal that the introduction of further basalt fibers led to a reduction in concrete workability, density, and compressive strength. The optimal compressive strength for concrete made from desert sand was achieved in the mixed concrete incorporating 1% steel fibers, measuring at 50.6 MPa. Meanwhile, the highest flexural and tensile strengths were observed in a concrete mixture of 0.3% basalt fiber and 1% steel fiber, measuring 7.35 MPa and 4.6 MPa. Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and X-ray Diffraction tests were conducted to examine the concrete microstructure. The results demonstrate that including a low content of hybrid steel and basalt fibers significantly improved the concrete microstructure. This study recommends conducting further studies to investigate the durability of concrete mixtures containing desert sand and basalt fibers and enhance sustainability in the construction industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Marey, H.; Kozma, G.; Szabó, G.: Effects of using green concrete materials on the CO2 emissions of the residential building sector in Egypt. Sustainability 14, 3592 (2022)

    Article  Google Scholar 

  2. Yaşar, E.; Erdoğan, Y.; Kılıç, A.: Effect of limestone aggregate type and water–cement ratio on concrete strength. Mater. Lett. 58, 772–777 (2004)

    Article  Google Scholar 

  3. Hasanbeigi, A.; Price, L.; Lin, E.: Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review. Renew. Sustain. Energy Rev. 16, 6220–6238 (2012)

    Article  Google Scholar 

  4. Ossa, A.; García, J.; Botero, E.: Use of recycled construction and demolition waste (CDW) aggregates: a sustainable alternative for the pavement construction industry. J. Clean. Prod. 135, 379–386 (2016)

    Article  Google Scholar 

  5. Deng, Z.; Yang, Z.; Bian, J.; Lin, J.; Long, Z.; Hong, G., et al.: Advantages and disadvantages of PVA-fibre-reinforced slag-and fly ash-blended geopolymer composites: Engineering properties and microstructure. Constr. Build. Mater. 349, 128690 (2022)

    Article  Google Scholar 

  6. Pranav, S.; Aggarwal, S.; Yang, E.-H.; Sarkar, A.K.; Singh, A.P.; Lahoti, M.: Alternative materials for wearing course of concrete pavements: a critical review. Constr. Build. Mater. 236, 117609 (2020)

    Article  Google Scholar 

  7. Nassani, D.E.: Experimental and analytical study of the mechanical and flexural behavior of hybrid fiber concretes. Structures 28, 1746–1755 (2020)

    Article  Google Scholar 

  8. Zou, Y.; Yu, K.; Heng, J.; Zhang, Z.; Peng, H.; Wu, C., et al.: Feasibility study of new GFRP grid web-Concrete composite beam. Compos. Struct. 305, 116527 (2023)

    Article  Google Scholar 

  9. Shafighfard, T.; Bagherzadeh, F.; Rizi, R.A.; Yoo, D.-Y.: Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms. J. Market. Res. 21, 3777–3794 (2022)

    Google Scholar 

  10. Bagherzadeh, F.; Shafighfard, T.: Ensemble machine learning approach for evaluating the material characterization of carbon nanotube-reinforced cementitious composites. Case Stud. Construct. Mater. 17, e01537 (2022)

    Article  Google Scholar 

  11. Amran, M.; Huang, S.-S.; Onaizi, A.M.; Makul, N.; Abdelgader, H.S.; Ozbakkaloglu, T.: Recent trends in ultra-high performance concrete (UHPC): current status, challenges, and future prospects. Constr. Build. Mater. 352, 129029 (2022)

    Article  Google Scholar 

  12. Semendary, A.A.; Hamid, W.K.; Steinberg, E.P.; Khoury, I.: Shear friction performance between high strength concrete (HSC) and ultra high performance concrete (UHPC) for bridge connection applications. Eng. Struct. 205, 110122 (2020)

    Article  Google Scholar 

  13. Alaskar, A.; Albidah, A.; Alqarni, A.S.; Alyousef, R.; Mohammadhosseini, H.: Performance evaluation of high-strength concrete reinforced with basalt fibers exposed to elevated temperatures. J. Build. Eng. 35, 102108 (2021)

    Article  Google Scholar 

  14. Yang, J.; Guo, Y.; Shen, A.; Wu, H.; Li, Y.; Lyu, Z., et al.: Performance of basalt fibre reinforced concrete and resistance to shrinkage, cracking, and fatigue. Int. J. Pavem. Eng. 24, 1–16 (2022)

    Google Scholar 

  15. Liu, Q.; Cai, L.; Guo, R.: Experimental study on the mechanical behaviour of short chopped basalt fibre reinforced concrete beams. Structures 45, 1110–1123 (2022)

    Article  Google Scholar 

  16. Shi, F.; Pham, T.M.; Hao, H.; Hao, Y.: Post-cracking behaviour of basalt and macro polypropylene hybrid fibre reinforced concrete with different compressive strengths. Constr. Build. Mater. 262, 120108 (2020)

    Article  Google Scholar 

  17. Guo, A.; Sun, Z.; Satyavolu, J.: Impact of modified kenaf fibers on shrinkage and cracking of cement pastes. Constr. Build. Mater. 264, 120230 (2020)

    Article  Google Scholar 

  18. Shao, R.; Wu, C.; Li, J.; Liu, Z.: Investigation on the mechanical characteristics of multiscale mono/hybrid steel fibre-reinforced dry UHPC. Cement Concr. Compos. 133, 104681 (2022)

    Article  Google Scholar 

  19. Latifi, M.R.; Biricik, Ö.; Mardani Aghabaglou, A.: Effect of the addition of polypropylene fiber on concrete properties. J. Adhesion Sci. Technol. 36, 345–369 (2022)

    Article  Google Scholar 

  20. Jabbar, A.M.; Hamood, M.J.; Mohammed, D.H.: The effect of using basalt fibers compared to steel fibers on the shear behavior of ultra-high performance concrete T-beam. Case Stud. Construct. Mater. 15, e00702 (2021)

    Article  Google Scholar 

  21. Liu, J.; Peng, Y.; Xu, S.; Yuan, P.; Qu, K.; Yu, X., et al.: Investigation of geopolymer-based ultra-high performance concrete slabs against contact explosions. Constr. Build. Mater. 315, 125727 (2022)

    Article  Google Scholar 

  22. Wang, Q.; Yi, Y.; Ma, G.; Luo, H.: Hybrid effects of steel fibers, basalt fibers and calcium sulfate on mechanical performance of PVA-ECC containing high-volume fly ash. Cement Concr. Compos. 97, 357–368 (2019)

    Article  Google Scholar 

  23. Ravichandran, D.; Prem, P.R.; Kaliyavaradhan, S.K.; Ambily, P.: Influence of fibers on fresh and hardened properties of Ultra High Performance Concrete (UHPC)—a review. J. Build. Eng. 57, 104922 (2022)

    Article  Google Scholar 

  24. Hasan, R.; Sobuz, M.H.R.; Akid, A.S.M.; Awall, M.R.; Houda, M.; Saha, A., et al.: Eco-friendly self-consolidating concrete production with reinforcing jute fiber. J. Build. Eng. 63, 105519 (2023)

    Article  Google Scholar 

  25. Amran, M.; Fediuk, R.; Abdelgader, H.S.; Murali, G.; Ozbakkaloglu, T.; Lee, Y.H., et al.: Fiber-reinforced alkali-activated concrete: a review. J. Build. Eng. 45, 103638 (2022)

    Article  Google Scholar 

  26. Che, J.; Guo, Z.; Li, Q.; Liu, H.: Mechanical properties of desert-sand-based steel-PVA hybrid fiber reinforced engineered cementitious composites (H-DSECC). KSCE J. Civ. Eng. 26, 5160–5172 (2022)

    Article  Google Scholar 

  27. Khan, M.I.; Fares, G.; Abbas, Y.M.: Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete. Constr. Build. Mater. 315, 125753 (2022)

    Article  Google Scholar 

  28. El-Hassan, H.; Hussein, A.; Medljy, J.; El-Maaddawy, T.: Performance of steel fiber-reinforced alkali-activated slag-fly ash blended concrete incorporating recycled concrete aggregates and dune sand. Buildings 11, 327 (2021)

    Article  Google Scholar 

  29. Qu, C.; Qin, Y.; Luo, L.; Zhang, L.: Mechanical properties and acoustic emission analysis of desert sand concrete reinforced with steel fiber. Sci. Rep. 12, 20488 (2022)

    Article  Google Scholar 

  30. Dawood, A.O.; Jaber, A.M.: Effect of dune sand as sand replacement on the mechanical properties of the hybrid fiber reinforced concrete. Civ. Environ. Eng. 18, 111–136 (2022)

    Article  Google Scholar 

  31. Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D.: A short review on basalt fiber reinforced polymer composites. Compos. B Eng. 73, 166–180 (2015)

    Article  Google Scholar 

  32. Wu, R.H.: The application of basalt fiber in building materials. Adv. Mater. Res. 450–451, 499–502 (2012)

    Article  Google Scholar 

  33. Kizilkanat, A.B.; Kabay, N.; Akyüncü, V.; Chowdhury, S.; Akça, A.H.: Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: an experimental study. Constr. Build. Mater. 100, 218–224 (2015)

    Article  Google Scholar 

  34. Wang, D.; Ju, Y.; Shen, H.; Xu, L.: Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber. Constr. Build. Mater. 197, 464–473 (2019)

    Article  Google Scholar 

  35. Bendixen, M.; Iversen, L.L.; Best, J.; Franks, D.M.; Hackney, C.R.; Latrubesse, E.M., et al.: Sand, gravel, and UN sustainable development goals: conflicts, synergies, and pathways forward. One Earth 4, 1095–1111 (2021)

    Article  Google Scholar 

  36. Bisht, A.: Conceptualizing sand extractivism: deconstructing an emerging resource frontier. Extract. Ind. Soc. 8, 100904 (2021)

    Article  Google Scholar 

  37. Khan, M.; Cao, M.; Ali, M.: Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Constr. Build. Mater. 192, 742–753 (2018)

    Article  Google Scholar 

  38. Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E.: Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construct Build Mater 116, 15–24 (2016)

    Article  Google Scholar 

  39. Sakai, E.; Miyahara, S.; Ohsawa, S.; Lee, S.-H.; Daimon, M.: Hydration of fly ash cement. Cement Concr. Res. 35, 1135–1140 (2005)

    Article  Google Scholar 

  40. ASTM, A.: C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, 2013 (2013)

  41. A. C143: Standard test method for slump of hydraulic-cement concrete. ASTM International Conshohocken, PA (2015)

  42. Concrete, A.I.C.C.O.; Aggregates, C.: Standard test method for compressive strength of cylindrical concrete specimens. ASTM international (2014)

  43. Astm, C.: 597, Standard test method for pulse velocity through concrete. ASTM International, West Conshohocken (2009)

  44. Astm, C: 1609/c 1609m standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading). Replaces ASTM C, 1018 (2012)

  45. Standard, A.: C496/c496m (2011) Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. Annual Book of ASTM Standards, 9 (2004)

  46. Faris, M.A.; Abdullah, M.M.A.B.; Muniandy, R.; Abu Hashim, M.F.; Błoch, K.; Jeż, B., et al.: Comparison of hook and straight steel fibers addition on malaysian fly ash-based geopolymer concrete on the slump, density, water absorption and mechanical properties. Materials 14, 1310 (2021)

    Article  Google Scholar 

  47. Gencel, O.; Bilir, T.; Bademler, Z.; Ozbakkaloglu, T.: A detailed review on foam concrete composites: Ingredients, properties, and microstructure. Appl. Sci. 12, 5752 (2022)

    Article  Google Scholar 

  48. Kachouh, N.; El-Hassan, H.; El-Maaddawy, T.: Effect of steel fibers on the performance of concrete made with recycled concrete aggregates and dune sand. Constr. Build. Mater. 213, 348–359 (2019)

    Article  Google Scholar 

  49. Mostafa, S.A.; Tayeh, B.A.; Almeshal, I.: Investigation the properties of sustainable ultra-high-performance basalt fibre self-compacting concrete incorporating nano agricultural waste under normal and elevated temperatures. Case Stud. Construct. Mater. 17, e01453 (2022)

    Article  Google Scholar 

  50. Khan, M.; Cao, M.; Chu, S.; Ali, M.: Properties of hybrid steel-basalt fiber reinforced concrete exposed to different surrounding conditions. Constr. Build. Mater. 322, 126340 (2022)

    Article  Google Scholar 

  51. Bakthavatchalam, K.; Rajendran, M.: An experimental investigation on potassium activator based geopolymer concrete incorporated with hybrid fibers. Mater. Today Proc. 46, 8494–8501 (2021)

    Article  Google Scholar 

  52. Shoaib, S.; El-Maaddawy, T.; El-Hassan, H.; El-Ariss, B.; Alsalami, M.: Effect of basalt fibers on properties of normal and high strength concrete made with dune sand. In: 7th World Congress on Civil, Structural, and Environmental Engineering, CSEE 2022, 2022, p. ICSECT 130

  53. Yılmaz, A.: Engineering properties of basalt aggregates in terms of use in granular layers of flexible pavements. Case Stud. Construct. Mater. 17, e01182 (2022)

    Article  Google Scholar 

  54. Kuranlı, Ö.F.; Uysal, M.; Abbas, M.T.; Cosgun, T.; Niş, A.; Aygörmez, Y., et al.: Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Constr. Build. Mater. 325, 126747 (2022)

    Article  Google Scholar 

  55. Barnat-Hunek, D.; Widomski, M.K.; Szafraniec, M.; Łagód, G.: Impact of different binders on the roughness, adhesion strength, and other properties of mortars with expanded cork. Materials 11, 364 (2018)

    Article  Google Scholar 

  56. Chen, B.; Liu, J.: Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability. Cem. Concr. Res. 35, 913–917 (2005)

    Article  Google Scholar 

  57. Gao, L.; Adesina, A.; Das, S.: Properties of eco-friendly basalt fibre reinforced concrete designed by Taguchi method. Constr. Build. Mater. 302, 124161 (2021)

    Article  Google Scholar 

  58. Zhao, Q.; Wang, Y.; Xie, M.; Huang, B.: Experimental study on mechanical behavior of steel fiber reinforced geopolymeric recycled aggregate concrete. Constr. Build. Mater. 356, 129267 (2022)

    Article  Google Scholar 

  59. Li, D.; Niu, D.; Fu, Q.; Luo, D.: Fractal characteristics of pore structure of hybrid Basalt-Polypropylene fibre-reinforced concrete. Cem. Concr. Compos. 109, 103555 (2020)

    Article  Google Scholar 

  60. Afroz, M.; Venkatesan, S.; Patnaikuni, I.: Effects of hybrid fibers on the development of high volume fly ash cement composite. Constr. Build. Mater. 215, 984–997 (2019)

    Article  Google Scholar 

  61. Ahmad, M.R.; Chen, B.; Yu, J.: A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash. Compos. B Eng. 168, 204–217 (2019)

    Article  Google Scholar 

  62. Liu, M.; Dai, W.; Zhong, C.; Yang, X.: Study on mechanical properties and microstructure of basalt fiber reactive powder concrete. Buildings 12, 1734 (2022)

    Article  Google Scholar 

  63. Niu, D.; Su, L.; Luo, Y.; Huang, D.; Luo, D.: Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete. Constr. Build. Mater. 237, 117628 (2020)

    Article  Google Scholar 

  64. Leong, G.W.; Mo, K.H.; Loh, Z.P.; Ibrahim, Z.: Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers. Constr. Build. Mater. 246, 118410 (2020)

    Article  Google Scholar 

  65. Branston, J.; Das, S.; Kenno, S.Y.; Taylor, C.: Mechanical behaviour of basalt fibre reinforced concrete. Constr. Build. Mater. 124, 878–886 (2016)

    Article  Google Scholar 

  66. Kumar, S.S.; Pazhani, K.; Ravisankar, K.: Fracture behaviour of fibre reinforced geopolymer concrete. Curr. Sci. 113, 116–122 (2017)

    Article  Google Scholar 

  67. Yang, S.; Zhao, R.; Ma, B.; Si, R.; Zeng, X.: Mechanical and fracture properties of fly ash-based geopolymer concrete with different fibers. J. Build. Eng. 63, 105281 (2023)

    Article  Google Scholar 

  68. Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Metselaar, H.S.C.; Jumaat, M.Z.: Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 122, 73–81 (2016)

    Article  Google Scholar 

  69. Khan, M.Z.N.; Hao, Y.; Hao, H.: Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension. Cem. Concr. Compos. 104, 103343 (2019)

    Article  Google Scholar 

  70. Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R.: Experimental evaluation of fiber reinforced concrete fracture properties. Compos. B Eng. 41, 17–24 (2010)

    Article  Google Scholar 

  71. Meng, W.; Khayat, K.H.: Effect of hybrid fibers on fresh properties, mechanical properties, and autogenous shrinkage of cost-effective UHPC. J. Mater. Civ. Eng. 30, 04018030 (2018)

    Article  Google Scholar 

  72. Kang, S.-T.; Choi, J.-I.; Koh, K.-T.; Lee, K.S.; Lee, B.Y.: Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete. Compos. Struct. 145, 37–42 (2016)

    Article  Google Scholar 

  73. Li, Z.-X.; Li, C.-H.; Shi, Y.-D.; Zhou, X.-J.: Experimental investigation on mechanical properties of hybrid fibre reinforced concrete. Constr. Build. Mater. 157, 930–942 (2017)

    Article  Google Scholar 

  74. Fang, S.-E.; Hong, H.-S.; Zhang, P.-H.: Mechanical property tests and strength formulas of basalt fiber reinforced recycled aggregate concrete. Materials 11, 1851 (2018)

    Article  Google Scholar 

  75. Dong, J.; Wang, Q.; Guan, Z.: Material properties of basalt fibre reinforced concrete made with recycled earthquake waste. Constr. Build. Mater. 130, 241–251 (2017)

    Article  Google Scholar 

  76. Zhou, F.; Liu, H.; Du, Y.; Liu, L.; Zhu, D.; Pan, W.: Uniaxial tensile behavior of carbon textile reinforced mortar. Materials 12, 374 (2019)

    Article  Google Scholar 

  77. Yuan, C.; Chen, W.; Pham, T.M.; Hao, H.: Bond behavior between basalt fibres reinforced polymer sheets and steel fibres reinforced concrete. Eng. Struct. 176, 812–824 (2018)

    Article  Google Scholar 

  78. Ghosh, R.; Sagar, S.P.; Kumar, A.; Gupta, S.K.; Kumar, S.: Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. J. Build. Eng. 16, 39–44 (2018)

    Article  Google Scholar 

  79. Saha, A.K.; Majhi, S.; Sarker, P.K.; Mukherjee, A.; Siddika, A.; Aslani, F., et al.: Non-destructive prediction of strength of concrete made by lightweight recycled aggregates and nickel slag. J. Build. Eng. 33, 101614 (2021)

    Article  Google Scholar 

  80. Malhotra, V.M.: Testing Hardened Concrete: Nondestructive Methods (1976)

  81. Asil, M.B.; Ranjbar, M.M.: Hybrid effect of carbon nanotubes and basalt fibers on mechanical, durability, and microstructure properties of lightweight geopolymer concretes. Constr. Build. Mater. 357, 129352 (2022)

    Article  Google Scholar 

  82. Wang, S.; Baxter, L.; Fonseca, F.: Biomass fly ash in concrete: SEM, EDX and ESEM analysis. Fuel 87, 372–379 (2008)

    Article  Google Scholar 

  83. Khan, R.M.A.; Shafighfard, T.; Ali, H.Q.; Mieloszyk, M.; Yildiz, M.: Strength prediction and experimental damage investigations of plain woven CFRPs with interacting holes using multi-instrument measurements. Polym. Compos. 44, 3594–3609 (2023)

    Article  Google Scholar 

  84. Zhang, Q.; Ye, G.: Microstructure analysis of heated portland cement paste. Procedia Eng. 14, 830–836 (2011)

    Article  Google Scholar 

  85. Dolado, J.S.; Griebel, M.; Hamaekers, J.: A molecular dynamic study of cementitious calcium silicate hydrate (C–S–H) gels. J. Am. Ceram. Soc. 90, 3938–3942 (2007)

    Article  Google Scholar 

  86. Kapeluszna, E.; Kotwica, Ł; Różycka, A.; Gołek, Ł: Incorporation of Al in CASH gels with various Ca/Si and Al/Si ratio: microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr. Build. Mater. 155, 643–653 (2017)

    Article  Google Scholar 

  87. Siddique, S.; Shrivastava, S.; Chaudhary, S.: Influence of ceramic waste as fine aggregate in concrete: Pozzolanic, XRD, FT-IR, and NMR investigations. J. Mater. Civ. Eng. 30, 04018227 (2018)

    Article  Google Scholar 

  88. Narasimha Reddy, P.; Ahmed Naqash, J.: Experimental study on TGA, XRD and SEM analysis of concrete with ultra-fine slag. Int. J. Eng. 32, 679–684 (2019)

    Google Scholar 

  89. Evju, C.; Hansen, S.: Expansive properties of ettringite in a mixture of calcium aluminate cement, Portland cement and β-calcium sulfate hemihydrate. Cem. Concr. Res. 31, 257–261 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Abed.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4824 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamada, H.M., Abed, F., Al-Sadoon, Z.A. et al. Effect of Basalt and Steel Fibers on the Microstructure and Strength of Concrete with Desert Sand. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-08930-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-08930-w

Keywords

Navigation