Skip to main content
Log in

Pointwise adaptive non-conforming finite element method for the obstacle problem

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this article, we develop a posteriori error analysis of a non-conforming finite element method in the supremum norm for the elliptic obstacle problem. In the analysis, the proper construction of the discrete Lagrange multiplier helps in obtaining the desired sign property of its average over the elements. The sub- and super-solutions, Green’s function, residual functional, and averaging operator are used crucially in proving the reliability of the proposed error estimator. Numerical results validating the theoretical results and illustrating the reliability and the efficiency of the error estimator are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data was used for the work carried out in this article.

References

  • Arnold DN, Brezzi F (1985) Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19(1):7–32

    MathSciNet  Google Scholar 

  • Atkinson K, Han W (2009) Theoretical numerical analysis, 3rd edn. A functional analysis framework. Springer, New York

    Google Scholar 

  • Bartels S, Carstensen C (2004) Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer Math 99:225–249

    MathSciNet  Google Scholar 

  • Belgacem FB (2000) Numerical solution of some variational inequalities arisen from unilateral contact problems by finite element method. SIAM J Numer Anal 37:1198–1216

    MathSciNet  Google Scholar 

  • Braess D (2005) A posteriori error estimators for obstacle problems-another look. Numer Math 101:415–421

    MathSciNet  Google Scholar 

  • Braess D, Carstensen C, Hoppe RHW (2007) Convergence analysis of a conforming adaptive finite element method for an obstacle problem. Numer Math 107:455–471

    MathSciNet  Google Scholar 

  • Brenner SC, Scott LR (2008) The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15 , Springer, New York. https://doi.org/10.1007/978-0-387-75934-0

  • Brezzi F, Hager WW, Raviart PA (1977) Error estimates for the finite element solution of variational inequalities, Part I primal theory. Numer Math 28:431–443

    MathSciNet  Google Scholar 

  • Brezzi F, Hager WW, Raviart PA (1978) Error estimates for the finite element solution of variational inequalities, Part. II: Mixed methods. Numer Math 31:1–16

    MathSciNet  Google Scholar 

  • Carstensen C, Gedicke J, Rim D (2012) Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods. J Comput Math 30(4):337–353

    MathSciNet  Google Scholar 

  • Carstensen C, Merdon C (2013) A posteriori error estimator competition for conforming obstacle problems. Numer Methods Partial Differ Equ 29(2):667–692

    MathSciNet  Google Scholar 

  • Carstensen C, Gallistl D (2014) Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer Math 126:33–51

    MathSciNet  Google Scholar 

  • Carstensen C, Köhler K (2017) Efficient discrete Lagrange multipliers in three first-order finite element discretizations for the a posteriori error control in an obstacle problem. SIAM J Numer Anal 55(1):349–375

    MathSciNet  Google Scholar 

  • Carstensen C, Köhler K (2017) Nonconforming FEM for obstacle probelm. IMA J. of Numer. Anal. 37:64–93

    MathSciNet  Google Scholar 

  • Ciarlet PG (1978) The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam

    Google Scholar 

  • Chen Z, Nochetto R (2000) Residual type a posteriori error estimates for elliptic obstacle problems. Numer Math 84:527–548

    MathSciNet  Google Scholar 

  • Constantin C, Christian M (2018) A note on a priori \(L^p\) error estimates for the obstacle problem. Numer Math 139(1):27–45

    MathSciNet  Google Scholar 

  • Crouzeix M, Raviart P-A (1973) Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 , no. R-3, 33-75. https://doi.org/10.1051/m2an/197307R300331

  • Crouzeix M, Falk RS (1989) Nonconforming finite elements for the Stokes problem. Math. Comp. 52(186):437–456. https://doi.org/10.1090/S0025-5718-1989-0958870-8

    Article  MathSciNet  Google Scholar 

  • Demlow A, Georgoulis EH (2012) Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 50(5):2159–2181

    MathSciNet  Google Scholar 

  • Demlow A, Kopteva N (2016) Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction diffusion problems. Numer Math 133(4):707–742

    MathSciNet  Google Scholar 

  • Dios BAD, Gudi T, Porwal K (2022) Pointwise a posteriori error analysis of a discontinuous Galerkin method for the elliptic obstacle problem. IMA J Numer Anal 00:1–36

    Google Scholar 

  • Falk RS (1974) Error Estimation for the approximation of a class of Variational Inequalities. Math. Comp. 28:963–971

    Google Scholar 

  • Fortin M, Soulie M (1983) A nonconforming piecewise quadratic finite element on triangles. Internat. J. Numer. Methods Eng. 19(4):505–520

    MathSciNet  Google Scholar 

  • Fortin M (1985) A three-dimensional quadratic nonconforming element. Numer Math 46(2):269–279. https://doi.org/10.1007/BF01390424

    Article  MathSciNet  Google Scholar 

  • Friedman A (2000) Free boundary problems in science and technology. Notices of the AMS, 47, no. 8, 854-861

  • Gaddam S, Gudi T (2018) Bubbles enriched quadratic finite element method for the 3d-elliptic obstacle problem, Comput. Meth. Appl Math 18:223–236

    MathSciNet  Google Scholar 

  • Gaddam S, Gudi T (2018) Inhomogeneous Dirichlet boundary condition in the a posteriori error control of the obstacle problem. Comput Math Appl 75(7):2311–2327

    MathSciNet  Google Scholar 

  • Gaddam S, Gudi T, Porwal K (2022) Two new approaches for solving elliptic obstacle problems using discontinuous Galerkin methods. BIT Numer Math 62:89–124

    MathSciNet  Google Scholar 

  • Glowinski R (2008) Lectures on Numerical Methods For Non-Linear Variational Problems, Springer,

  • Grüter M, Widman KO (1982) The Green function for uniformly elliptic equations. Manuscripta Math 37(3):303–342

    MathSciNet  Google Scholar 

  • Gudi T, Porwal K (2014) A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems. Math. Comp. 83(286):579–602

    MathSciNet  Google Scholar 

  • Gudi T, Porwal K (2014) A remark on the a posteriori error analysis of discontinuous Galerkin methods for obstacle problem, Comput. Meth. Appl Math 14:71–87

    MathSciNet  Google Scholar 

  • Gudi T, Porwal K (2015) A reliable residual based a posteriori error estimator for quadratic finite element method for the elliptic obstacle problem. Comp. Meth. Appl. Math. 15:145–160

    MathSciNet  Google Scholar 

  • Schmidt K, Diaz J, Heier C (2015) Non-conforming Galerkin finite element methods for local absorbing boundary conditions of higher order. Comput Math Appl 70(9):2252–2269

    MathSciNet  Google Scholar 

  • Hintermüller M, Ito K, Kunish K (2003) The primal-dual active set strategy as a semismooth Newton method. SIAM J Optim 13:865–888

    MathSciNet  Google Scholar 

  • Hofmann S, Kim S (2007) The green function estimates for strongly elliptic systems of second order. Manuscripta Math 124(2):139–172

    MathSciNet  Google Scholar 

  • Khandelwal R, Porwal K (2022) Pointwise a posteriori error analysis of quadratic finite element method for the elliptic obstacle problem, J. Comp. Appl. Math., 412 , 114364. https://doi.org/10.1016/j.cam.2022.114364

  • Khandelwal R, Porwal K, Singla R (2023) Supremum-norm a posteriori error control of quadratic discontinuous Galerkin methods for the obstacle problem. Comput Math Appl 137:147–171

    MathSciNet  Google Scholar 

  • Kim KY (2007) A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl Numer Math 57:1065–1080

    MathSciNet  Google Scholar 

  • Caffarelli LA, Kinderlehrer D (1980) Potential methods in variational inequalities. J. Anal. Math. 37:285–295

    MathSciNet  Google Scholar 

  • Kinderlehrer D, Stampacchia G (2000) An introduction to variational inequalities and their applications. SIAM, Philadelphia

    Google Scholar 

  • Lions J-L, Stampacchia G (1967) Variational inequalities. Comm. Pure Appl. Math. 20:493–519. https://doi.org/10.1002/cpa.3160200302

    Article  MathSciNet  Google Scholar 

  • Majumder P (2021) A convergence analysis of semi-discrete and fully-discrete nonconforming FEM for the parabolic obstacle problem. Int J Comput Math 98(10):1946–1973

    MathSciNet  Google Scholar 

  • Matthies G, Tobiska L (2005) Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer Math 102(2):293–309

    MathSciNet  Google Scholar 

  • Maubach LMJ, Rabier PJ (2003) Nonconforming finite elements of arbitrary degree over triangles, RANA 0328, Technische Universiteit Eindhoven,

  • Nitsche J (1977) \(L_{\infty }\) convergence of finite element approximations, in mathematical aspects of finite element methods, Proc. Conf. Rome (1975) , I. Galligani and E. Magenes, eds., Lectures Notes Math 606 , 261-274

  • Nochetto R, Petersdorff TV, Zhang CS (2010) A posteriori error analysis for a class of integral equations and variational inequalities. Numer Math 116:519–552

    MathSciNet  Google Scholar 

  • Ainsworth M, Oden JT (2000) A Posteriori error estimation in finite element analysis, Wiley-Blackwell

  • Schedensack M (2017) A new generalization of the P1 non-conforming FEM to higher polynomial degrees. Comput. Methods Appl. Math. 17(1):161–185

    MathSciNet  Google Scholar 

  • Seoung RC (2000) A priori error estimates for the finite element approximation of an obstacle problem. Korean J. Comput. Appl. Math. 7(1):175–181

    MathSciNet  Google Scholar 

  • Veeser A (2001) Efficient and Reliable a posteriori error estimates for elliptic obstacle problems. SIAM J Numer Anal 39:146–167

    MathSciNet  Google Scholar 

  • Nochetto RH, Siebert KG, Veeser A (2003) Pointwise a posteriori error control for elliptic obstacle problems. Numer Math 95(1):163–195

    MathSciNet  Google Scholar 

  • Nochetto RH, Siebert KG, Veeser A (2005) Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J Numer Anal 42(5):2118–2135

    MathSciNet  Google Scholar 

  • Verfurth R (1996) A review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, John Wiley, Chichester. B.G. Teubner, Stuttgart, Germany

    Google Scholar 

  • Wang L (2002) On the quadratic finite element approximation to the obstacle problem. Numer Math 92:771–778

    MathSciNet  Google Scholar 

  • Wang L (2003) On the error estimate of nonconforming finite element approximation to the obstacle problem. J Comput Math 21:481–490

    MathSciNet  Google Scholar 

  • Wang F, Han W, Cheng X (2010) Discontinuous Galerkin methods for solving elliptic variational inequalities. SIAM J Numer Anal 48:708–733

    MathSciNet  Google Scholar 

  • Weiss A, Wohlmuth BI (2009) A posteriori error estimator and error control for contact problems. Math. Comp. 78:1237–1267

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamana Porwal.

Additional information

Communicated by Frederic Valentin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

K. Porwal work is supported by DST-SERB MATRICS grant, India. R. Singla work is supported by institute fellowship by IIT Delhi, India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porwal, K., Singla, R. Pointwise adaptive non-conforming finite element method for the obstacle problem. Comp. Appl. Math. 43, 150 (2024). https://doi.org/10.1007/s40314-024-02641-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-024-02641-6

Keywords

Mathematics Subject Classification

Navigation