Skip to main content
Log in

A Haplotype Network Approach to Reconstruct the Phylogeny of Rosa L. (Rosaceae)

  • BOTANY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

We used a plastid ndhC-trnV intergenic spacer to reconstruct the genealogy of haplotypes and phylogenetic relationships of major taxonomic groups of the genus Rosa. We analyzed the data using the statistical parsimony, maximum likelihood, and NeighborNet approaches. According to our results, the majority of species may be subdivided into three groups roughly corresponding to the taxonomic sections Pimpinellifoliae, Rosa (former Cinnamomeae) and Synstylae + Chinenses + Gallicanae + Caninae. We assess their relationships as broadly paraphyletic, since the first group appears to be ancestral to the second and the third. The fourth group distanced from these three by many mutational steps consists of R. persica (subgenus Hulthemia) sequences. We argue that R. persica together with the North American R. minutifolia and R. stellata (section Minutifoliae) probably represent the only remnants of an ancient group of roses widely distributed in the Northern Hemisphere in the Oligocene. Two major lineages of the section Caninae arose independently from different ancestors belonging to Synstylae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Becker, H.F., The fossil record of the genus Rosa, Bull. Torrey Bot. Club, 1963, vol. 90, pp. 99–110.

    Article  Google Scholar 

  2. Borchsenius, F., FastGap 1.2, Department of Biosciences, Aarhus University, Denmark, 2009. http://www.aubot.dk/FastGap_home.htm.

    Google Scholar 

  3. Bruneau, A., Starr, J.R., and Joly, S., Phylogenetic relationships in the genus Rosa: new evidence from plastid DNA sequences and an appraisal of current knowledge, Syst. Bot., 2007, vol. 32, no. 2, pp. 366–378. https://doi.org/10.1600/036364407781179653

    Article  Google Scholar 

  4. Buzunova, I.O., Rosa L., in Flora Vostochnoi Evropy (Flora of Eastern Europe), Tsvelev, N.N., Ed., St. Petersburg: Mir i Sem’ya, 2001, vol. 10, pp. 329–361.

    Google Scholar 

  5. Chen, X., Liu, Y., Sun, J., Wang, L., and Zhou, S., The complete plastid genome sequence of Rosa acicularis in Rosaceae, Mitochondrial DNA, Part B, 2019a, vol. 4, no. 1, pp. 1743–1744. https://doi.org/10.1080/23802359.2019.1610100

    Article  Google Scholar 

  6. Chen, M., Zhang, C., and Gao, X., The complete plastid genome sequence of Rosa pricei (Rosaceae), Mitochondrial DNA, Part B, 2019b, vol. 4, no. 1, p. 1918.

    Article  Google Scholar 

  7. Clement, M., Posada, D., and Crandall, K.A., TCS: a computer program to estimate gene genealogies, Mol. Ecol., 2000, vol. 9, pp. 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  8. Crandall, K.A. and Templeton, A.R., Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction, Genetics, 1993, vol. 134, pp. 959–969. https://doi.org/10.1093/genetics/134.3.959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crépin, F., Primitiae monographiae Rosarum. Matériaux pour servir a l’histoire des Roses, Gand, Marché aux Grains: Annoot-Braeckman, 1869.

  10. Crépin, F., Nouvelle classification des roses, Extrait du Journal des Roses, Drosne: Melun E., 1891, vols. 3–5, pp. 3–30.

    Google Scholar 

  11. Criscuolo, A. and Gribaldo, S., BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments, BMC Evol. Biol., 2010, vol. 10, p. 210. https://doi.org/10.1186/1471-2148-10-210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cui, W.H., Zhong, M.C., Du, X.Y., Qu, X.J., Jiang, X.D., Sun, Y.B., Wang, D., Chen, S.Y., and Hu, J.Y., The complete plastid genome sequence of a rambler rose, Rosa wichuraiana (Rosaceae), Mitochondrial DNA, Part B, 2020, vol. 5, no. 1, p. 252. https://doi.org/10.1080/23802359.2019.1700198

    Article  Google Scholar 

  13. Cui, W.H., Du, X.Y., Zhong, M.C., Fang, W., Suo, Z.Q., Wang, D., Dong, X., Jiang, X.D., and Hu, J.Y., Complex and reticulate origin of edible roses (Rosa, Rosaceae) in China, Hortic. Res., 2022, vol. 9, p. uhab051. https://doi.org/10.1093/hr/uhab051

  14. Debray, K., Marie-Magdelaine, J., Ruttink, T., Clotault, J., Foucher, F., and Malecot, V., Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: a case study in the genus Rosa (Rosaceae), BMC Evol. Biol, 2019, vol. 19, p. 152. https://doi.org/10.1186/s12862-019-1479-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Edler, D., Klein, J., Antonelli, A., and Silvestro, D., raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML, bioRxiv, 2019. https://doi.org/10.1101/800912

  16. Eriksson, T., Hibbs, M.S., Yoder, A.D., Delwiche, C.F., and Donoghue, M.J., The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of plastid DNA, Int. J. Pl. Sci., 2003, vol. 164, no. 2, pp. 197–211. https://doi.org/10.1086/346163

    Article  CAS  Google Scholar 

  17. Fedorova, A.V., Schanzer, I.A., and Kagalo, A.A., Local differentiation and hybridization in populations of wild roses in W Ukraine, Wulfenia, 2010, vol. 17, pp. 99–115.

    Google Scholar 

  18. Fougère-Danezan, M., Joly, S., Bruneau, A., Gao, X.F., and Zhang, L.B., Phylogeny and biogeography of wild roses with specific attention to polyploids, Ann. Bot. (Oxford), 2015, vol. 115, pp. 275−291. https://doi.org/10.1093/aob/mcu245

    Article  CAS  Google Scholar 

  19. Gurushidze, M., Fritsch, R.M., and Blattner, F.R., Species-level phylogeny of Allium subgenus Melanocrommyum: incomplete lineage sorting, hybridization and trnF gene duplication, Taxon, 2010, vol. 59, no. 3, pp. 829–840. https://doi.org/10.2307/25677671

    Article  Google Scholar 

  20. Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98.

    CAS  Google Scholar 

  21. Henker, H., 25. Rosa, in Gustav Hegi—Illustrierte Flora von Mitteleuropa, Weber, H.E., Ed., Berlin: Parey Buchverlag, 2003, 2nd ed., vol. 4, no. 2C, pp. 1–108.

  22. Herklotz, V., Kovařík, A., Lunerová, J., Lippitsch, S., Groth, M., and Ritz, C.M., The fate of ribosomal RNA genes in spontaneous polyploid dogrose hybrids [Rosa L. sect. Caninae (DC.) Ser.] exhibiting non-symmetrical meiosis, Plant J., 2018, vol. 94, pp. 77–90. https://doi.org/10.1111/tpj.13843

    Article  CAS  PubMed  Google Scholar 

  23. Hudson, R.R., Gene genealogies and the coalescent process, Oxford Surv. Evol. Biol., 1990, vol. 7, pp. 1–44.

    Google Scholar 

  24. Huson, D.H., SplitsTree: a program for analyzing and visualizing evolutionary data, Bioinformatics, 1998, vol. 14, pp. 68–73.

    Article  CAS  PubMed  Google Scholar 

  25. Huson, D.H. and Bryant, D., Application of phylogenetic networks in evolutionary studies, Mol. Biol. Evol., 2006, vol. 23, pp. 254–267.

    Article  CAS  PubMed  Google Scholar 

  26. International Code of Botanical Nomenclature (Vienna Code), McNeil, J., Barrie, C.F.R., Burdet, H.M., et al., Eds., Ruggell, Liechtenstein: Gantner Verlag, 2006.

    Google Scholar 

  27. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress, Shenzhen, China, July 2017, Turland, N.J., Wiersema, J.H., Barrie, F.R., Greuter, W., Hawksworth, D.L., Herendeen, P.S., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T.W., McNeill, J., Monro, A.M., Prado, J., Price, M.J., and Smith, G.F., Eds., Regnum Veg., Glashütten: Koeltz Botanical Books, 2018, vol. 159. https://doi.org/10.12705/Code.2018

  28. Jacob, S.S. and Blattner, F.R., A plastid genealogy of Hordeum (Poaceae): long-term persisting haplotypes, incomplete lineage sorting, regional extinction, and the consequences for phylogenetic inference, Mol. Biol. Evol., 2006, vol. 23, no. 8, pp. 1602–1612. https://doi.org/10.1093/molbev/msl018

    Article  CAS  Google Scholar 

  29. Jeon, J.-H. and Kim, S.C., Comparative analysis of the complete chloroplast genome sequences of three closely related East-Asian wild roses (Rosa sect. Synstylae, Rosaceae), Genes (Basel), 2019, vol. 10, no. 1, p. 23. https://doi.org/10.3390/genes10010023

    Book  Google Scholar 

  30. Jian, H.-Y., Zhang, H., Tang, K.-X., Li, S.-F., Wang, Q.-G., Zhang, T., Qiu, X.-Q., and Yan, H.-J., Decaploidy in Rosa praelucens Byhouwer (Rosaceae) endemic to Zhongdian Plateau, Yunnan, China, Caryologia, 2010, vol. 63, pp. 162–167.

    Article  Google Scholar 

  31. Jian, H.Y., Zhang, Y.H., Yan, H.J., Qiu, X.Q., Wang, Q.G., Li, S.B., and Zhang, S.D., The complete plastid genome of a key ancestor of modern roses, Rosa chinensis var. spontanea, and a comparison with congeneric species, Molecules, 2018a, vol. 23, p. 389. https://doi.org/10.3390/molecules23020389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jian, H.Y., Zhang, S., Zhang, T., Qui, X.Q., Yan, H.J., Li, S.B., Wang, Q.G., and Tang, K.X., Characterization of the complete plastid genome of a critically endangered decaploid rose species, Rosa praelucens (Rosaceae), Conserv. Genet. Res., 2018b, vol. 10, pp. 851–854. https://doi.org/10.1007/s12686-017-0946-3

    Article  Google Scholar 

  33. Katoh, K. and Standley, D.M., MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 2013, vol. 30, pp. 772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katoh, K., Misawa, K., Kuma, K., and Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform, Nucleic Acids Res., 2002, vol. 30, pp. 3059–3066. https://doi.org/10.1093/nar/gkf436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kellner, A., Benner, M., Walther, H., Kunzmann, L., Wissemann, V., and Ritz, C.M., Leaf architecture of extant species of Rosa L. and the Paleogene species Rosa lignitum Heer (Rosaceae), Int. J. Plant Sci., 2012, vol. 173, no. 3, pp. 239–250.

    Article  Google Scholar 

  36. Kinene, T., Wainaina, J., Maina, S., and Boykin, L.M., Rooting trees, methods for, in Encyclopedia of Evolutionary Biology, Kliman, R.M., Ed., Oxford: Academic, 2016, vol. 3, pp. 489−493.

    Google Scholar 

  37. Klášterský, I., Rosa L., in Flora Europaea, Tutin, T. et al., Eds., Cambridge: Cambridge Univ. Press, 1968, vol. 2, pp. 25–32.

  38. Koopman, W.J.M., Wissemann, V., De Cock, K., Van Huylenbroeck, J., De Riek, J., Sabatino, G.J.H., Visser, D., Vosman, B., Ritz, C.M., Maes, B., Werlemark, G., Nybom, H., Debener, T., Linde, M., and Smulders, M.J.M., AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae), Am. J. Bot., 2008, vol. 95, no. 3, pp. 353–366. https://doi.org/10.3732/ajb.95.3.353

    Article  CAS  PubMed  Google Scholar 

  39. Ku, T.C. and Robertson, K.R., Rosa Linnaeus, in Flora of China, Wu, C.Y. and Raven, P.H., Eds., Beijing/St. Louis: Science Press/Missouri Botanical Garden Press, 2003, vol. 9, pp. 339–381.

    Google Scholar 

  40. Kvaček, Z. and Walther, H., Oligocene flora of Bechlejovice at Děčín from the neovolcanic area of the České středohoří Mountains, Czech Republic, Acta Mus. Nat. Pragae, Ser. B, Hist. Nat., 2004, vol. 60, nos. 1–2, pp. 9–60.

    Google Scholar 

  41. Lewis, W.H., Ertter, B., and Bruneau, A., Rosa L., Flora of North America north of Mexico, Editorial Committee, Eds., vol. 9. http://www.efloras.org/florataxon.aspx?flora_id =1&taxon_id=128746. Accessed November 10, 2022.

  42. Linnaeus, C., Species Plantarum, Holmiae: Impensis Laurentii Salvii, 1753, vol. 1, pp. 491–492.

    Google Scholar 

  43. Liu, C., Wang, G., Wang, H., Xia, T., Zhang, S., Wang, Q., and Fang, Y., Phylogenetic relationships in the genus Rosa revisited based on rpl16, trnL-F, and atpB-rbcL sequences, Hort. Sci., 2015, vol. 50, no. 11, pp. 1618–1624.

    CAS  Google Scholar 

  44. Lunerová, J., Herklotz, V., Laudien, M., Vozárová, R., Groth, M., Kovařík, A., and Ritz, C.M., Asymmetrical canina meiosis is accompanied by the expansion of a pericentromeric satellite in non-recombining univalent chromosomes in the genus Rosa, Ann. Bot. (Oxford), 2020, vol. 125, no. 7, pp. 1025–1038. https://doi.org/10.1093/aob/mcaa028

    Article  CAS  Google Scholar 

  45. Meng, J., Fougere-Danezan, M., Zhang, L.-B., Li, D.-Z., and Yi, T.-S., Untangling the hybrid origin of the Chinese tea-roses: evidence from DNA sequences of single-copy nuclear and chloroplast genes, Plant Syst. Evol., 2011, vol. 297, pp. 157–170. https://doi.org/10.1007/s00606-011-0504-5

    Article  CAS  Google Scholar 

  46. Meng, J., Jiang, H., Linna Zhang, L., and He, J., Characterization of the complete plastid genome of an important Chinese Old Rose Rosa odorata var. pseudindica, Mitochondrial DNA, 2019, vol. 4, no. 1, pp. 679–680. https://doi.org/10.1080/23802359.2019.1572469

    Article  Google Scholar 

  47. Peterson, A., Harpke, D., Peterson, J., Harpke, A., and Peruzzi, L., A pre-Miocene Irano-Turanian cradle: origin and diversification of the species-rich monocot genus Gagea (Liliaceae), Ecol. Evol., 2019, vol. 9, no. 10, pp. 5870–5890. https://doi.org/10.1002/ece3.5170

    Article  PubMed  PubMed Central  Google Scholar 

  48. Plants of the World online (POWO). http://plantsoftheworldonline.org/. Accessed August 7, 2022.

  49. Potter, D., Gao, F., Bortiri, P.E., Oh, S.-H., and Baggett, S., Phylogenetic relationships in Rosaceae inferred from chloroplast matK and trnL-trnF nucleotide sequence data, Plant Syst. Evol., 2002, vol. 231, pp. 77–89. https://doi.org/10.1007/s006060200012

    Article  CAS  Google Scholar 

  50. Rehder, A., Rosa L., Manual of Cultivated Trees and Shrubs Hardy in North America, New York: Macmillan, 1949, 2nd ed., pp. 426–451.

    Google Scholar 

  51. Ritz, C.M., Schmuths, H., and Wissemann, V.. Evolution by reticulation: European dogroses originated by multiple hybridization across the genus Rosa, J. Hered., 2005, vol. 96, no. 1, pp. 4–14.

  52. Schanzer, I.A., Phylogeny and taxonomy of recently diverged groups as exemplified by the genus Rosa, Tr. Zool. Inst. Ross. Akad. Nauk, 2011, Appendix 2, pp. 202–216.

    Google Scholar 

  53. Schanzer, I.A., Vagina, A.V., and Ostapko, V.M., A critical study of wild roses (Rosa L.) from the “Khomutovskaya Steppe” Reserve, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2011, vol. 116, no. 3, pp. 38–49.

    Google Scholar 

  54. Schanzer, I.A., Fedorova, A.V., Galkina, M.A., Chubar, E.A., Rodionov, A.V., and Kotseruba, V.V., Is Rosa × archipelagica (Rosaceae, Rosoideae) really a spontaneous intersectional hybrid between R. rugosa and R. maximowicziana? Molecular data confirmation and evidence of paternal leakage, Phytotaxa, 2020, vol. 428, no. 2, pp. 93–103. https://doi.org/10.11646/phytotaxa.428.2.3

    Article  Google Scholar 

  55. Shaw, J., Lickey, E.B., Schilling, E.E., and Small, R.L., Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III, Am. J. Bot., 2007, vol. 94, no. 3, pp. 275–288. https://doi.org/10.3732/ajb.94.3.275

    Article  CAS  PubMed  Google Scholar 

  56. Silvestro, D. and Michalak, I., raxmlGUI: a graphical front-end for RAxML, Organisms Diversity Evol., 2012, vol. 12, pp. 335–337. https://doi.org/10.1007/s13127-011-0056-0

    Article  Google Scholar 

  57. Simmons, M.P. and Ochoterena, H., Gaps as characters in sequence-based phylogenetic analyses, Syst. Biol., 2000, vol. 49, no. 2, pp. 369–381. https://doi.org/10.1093/sysbio/49.2.369

    Article  CAS  PubMed  Google Scholar 

  58. Templeton, A.R., Crandall, K.A., and Sing, C.F., A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation, Genetics, 1992, vol. 132, pp. 619–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. The World Checklist of Vascular Plants (WCVP), Govaerts, R.H.A., Ed. https://wcvp.science.kew.org/. Accessed August 7, 2022.

  60. Tomljenović, N. and Pejić, I., Taxonomic review of the genus Rosa, Agric. Conspect. Sci., 2018, vol. 83, no. 2, pp. 139–147. https://hrcak.srce.hr/203011

  61. Wang, Q., Hu, H., An, J., Bai, G., Qunli Ren, Q., and Liu, J., Complete plastid genome sequence of Rosa roxburghii and its phylogenetic analysis, Mitochondrial DNA, Part B, 2018, vol. 3, no. 1, pp. 149–150. https://doi.org/10.1080/23802359.2018.1431074

    Article  PubMed  Google Scholar 

  62. Wang, M., Zhang, C., Li, M., and Gao, X., The complete plastid genome sequence of Rosa banksiae var. normalis (Rosaceae), Mitochondrial DNA, Part B, 2019, vol. 4, no. 1, pp. 969–970. https://doi.org/10.1080/23802359.2019.1580163

    Article  Google Scholar 

  63. Wissemann, V., Conventional taxonomy (wild roses), in Encyclopedia of Rose Science, Roberts, A.V., Debener, T., and Gudin, S., Eds., Amsterdam: Elsevier, 2003, pp. 111–117.

    Google Scholar 

  64. Wissemann, V., Beauty and the bastards. Intensive hybridization controls the evolution of wild roses, B.I.F. FUTURA, 2006, vol. 21, pp. 158–163.

    Google Scholar 

  65. Wissemann, V. and Ritz, C., The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy, Bot. J. Linn. Soc., 2005, vol. 147, pp. 275–290. https://doi.org/10.1111/j.1095-8339.2005.00368.x

    Article  Google Scholar 

  66. Yin, X., Liao, B., Guo, S., Liang, C., Pei, J., Xu, J., and Chen, S., The plastids genomic analyses of Rosa laevigata, R. rugosa and R. canina, Chin. Med., 2020, vol. 15, p. 18. https://doi.org/10.1186/s13020-020-0298-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, J., Esselink, G.D., Che, D., Fougère-Danezan, M., Arens, P., and Smulders, M.J.M., The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat, J. Hort. Sci. Biotechnol., 2013, vol. 88, no. 1, pp. 85–92. https://doi.org/10.1080/14620316.2013.11512940

    Article  CAS  Google Scholar 

  68. Zhang, S.D., Jin, J.J., Chen, S.Y., Chase, M.W., Soltis, D.E., Li, H.T., Yang, J.B., Li, D.Z., and Yi, T.S., Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics, New Phytol., 2017, vol. 214, no. 3, pp. 1355–1367. https://doi.org/10.1111/nph.14461

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, C., Xiong, X., and Gao, X., The complete plastid genome sequence of Rosa laevigata (Rosaceae), Mitochondrial DNA, Part B, 2019, vol. 4, no. 2, pp. 3556–3557. https://doi.org/10.1080/23802359.2019.1674200

    Article  PubMed  Google Scholar 

  70. Zhang, S.D., Zhang, C., and Ling, L.Z., The complete plastid genome of Rosa berberifolia, Mitochondrial DNA, 2019, vol. 4, no. 1, pp. 1741–1742. https://doi.org/10.1080/23802359.2019.1610093

    Article  Google Scholar 

  71. Zhang, C., Li, S.-Q., Xie, H.-H., Liu, J.-Q., and Gao, X.-F., Comparative plastid genome analyses of Rosa: insights into the phylogeny and gene divergence, Tree Genet. Genomes, 2022, vol. 18, p. 20. https://doi.org/10.1007/s11295-022-01549-8

    Article  CAS  Google Scholar 

  72. Zhao, X. and Gao, C., The complete plastid genome of Rosa minutifolia, Mitochondrial DNA, Part B, 2020, vol. 5, no. 3, pp. 3320–3321. https://doi.org/10.1080/23802359.2020.1817807

    Article  PubMed  Google Scholar 

  73. Zhao, L., Zhang, H., Wang, Q.-G., Ma, C.L., and Jian, H.-Y., The complete plastid genome of Rosa lucidissima, a critically endangered wild rose endemic to China, Mitochondrial DNA, Part B, 2019, vol. 4, no. 1, pp. 1826–1827. https://doi.org/10.1080/23802359.2019.1613198

    Article  Google Scholar 

  74. Zhu, Z.M., Gao, X.F., and Fougère-Danezan, M., Phylogeny of Rosa sections Chinenses and Synstylae (Rosaceae) based on plastid and nuclear markers, Mol. Phylogenet. Evol., 2015, vol. 87, pp. 50–64. https://doi.org/10.1016/j.ympev.2015.03.014

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the following colleagues who helped with collecting samples in the wild from various locations: K. Tojibaev (Botanical Institute, Uzbekistan), G. Šramko (Debrezen University, Hungary), E.A. Chubar (Natural Science Center for Marine Biology, Russia), Y.K. Vinogradova (Tsitsin Main Biological Garden, Russia), V. Herklotz (Senckenberg Natural History Museum, Germany), V.M. Ostapko (Donetzk Biological Garden, DPR), A.A. Kagalo (Institute of Ecology of the Carpathians, Ukraine), I. Bartish (Institute of Botany, Czech Republic), M.G. Pimenov (Moscow State University, Russia), A. Elkordy (Sohag University, Egypt), and curators of the Herbaria MHA, LE, KW, B, BP, and DE for permissions to destructive sampling of specimens. We thank K. Chamberlain (United Kingdom) for his useful linguistic corrections of the text and I.V. Belyaeva (Kew Gardens, United Kingdom) for her comments and suggestions for the manuscript.

Funding

This study was supported by the Tsitsin Main Botanical Garden, State Assignment no. 122042700002-6, and grants nos. 16-04-01390 and 19-04-01308 from the Russian Foundation for Basic Research. The authors are also grateful to the Ministry of Science and Higher Education of the Russian Federation for financial support of the Common Facilities Center “Herbarium of the Main Botanical Garden, Russian Academy of Sciences,” grant no. 075-15-2021-678.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Schanzer, A. V. Fedorova or I. G. Meschersky.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schanzer, I.A., Fedorova, A.V. & Meschersky, I.G. A Haplotype Network Approach to Reconstruct the Phylogeny of Rosa L. (Rosaceae). Biol Bull Russ Acad Sci 51, 331–345 (2024). https://doi.org/10.1134/S106235902360469X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235902360469X

Keywords:

Navigation