Skip to main content
Log in

The Role of Biodiversity in the Functioning of Ecosystems: Paper 1. General Principles of Monitoring Ecosystems

  • ECOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Ecosystem change is an everyday reality, and assessment of its ability to provide men with products and services of the ecosystem (fresh water, climate, soil fertility, etc.), which are necessary for human welfare, is an urgent applied issue. The question as to “whether changes in the loss of biological diversity will affect the functioning of local ecosystems” is attracting increasing attention. In this first paper, we consider modern approaches to ecosystem monitoring. The concept of historical and novel ecosystems, ecosystem resilience, threshold effects, theory-driven restoration, and social–ecological considerations are reviewed. The principles of indication, requirements for indicators, possibilities, and prospects for the use of small mammals as indicators of the dynamics of local ecosystems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Barnes, A.D., Weigelt, P., Jochum, M., Ott, D., Hodapp, D., Haneda, N.F., and Brose, U., Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems, Philos. Trans. R. Soc., B, 2016, vol. 371, no. 1694, p. 20150279. https://doi.org/10.1098/rstb.2015.0279

  2. Barrett, G.W. and Peles, J.D., Small mammal ecology: a landscape perspective, in Landscape Ecology of Small Mammals, Barrett, G.W. and Peles, J.D., Eds., New York: Springer, 1999, pp. 1–8.

    Book  Google Scholar 

  3. Bashenina, N.V., Puti adaptatsii myshevidnykh gryzunov (Ways of Adaptation of Muroid Rodents), Moscow: Nauka, 1977.

  4. de Bello, F., Lavorel, S., Díaz, S., Harrington, R., Bardgett, R.D., Berg, M.P., Cipriotti, P., Cornelissen, J.H.C., Feld, C.K., Hering, D., Martins da Silva, P., Potts, S.G., Sandin, L., Sousa, J.P., Storkey, J., Wardle, D.A., and Harrison, P.A., Towards an assessment of multiple ecosystem processes and services via functional traits, Biodiversity Conserv., 2010, vol. 19, pp. 2873–2893. https://doi.org/10.1007/s10531-010-9850-9

    Article  Google Scholar 

  5. Berlinches de Gea, A., Hautier, Y., and Geisen, S., Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning, Global Change Biol., 2023, vol. 29, no. 2, pp. 296–307. https://doi.org/10.1111/gcb.16471

    Article  CAS  Google Scholar 

  6. Bourliére, F., Mammals, small and large: the ecological implications of size, in Small Mammals: Their Productivity and Population Dynamics, Golley, F.B., Petrusewicz, K., and Ryszkowski, L., Eds., New York: Cambridge Univ. Press, 1975, pp. 1–8.

    Google Scholar 

  7. Buckley, R., Ecological indicators of tourist impacts in parks, J. Ecotourism, 2003, vol. 2, no. 1, pp. 54–66. https://doi.org/10.1080/14724040308668133

    Article  Google Scholar 

  8. Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D., and Naeem, S., Biodiversity loss and its impact on humanity, Nature, 2012, vol. 486, no. 7401, pp. 59–67. https://doi.org/10.1038/nature11148

    Article  CAS  PubMed  Google Scholar 

  9. Carignan, V. and Villard, M., Selecting indicator species to monitor ecological integrity: a review, Environ. Monit. Assess., 2002, vol. 78, no. 1, pp. 45–61. https://doi.org/10.1023/A:1016136723584

    Article  PubMed  Google Scholar 

  10. Carpenter, S.R. and Folke, C., Ecology for transformation, Trends Ecol. Evol., 2006, vol. 21, pp. 309–315. https://doi.org/10.1111/j.1461-0248.2005.00877.x

    Article  PubMed  Google Scholar 

  11. Carpenter, S.R. and Brock, W.A., Rising variance: a leading indicator of ecological transition, Ecol. Lett., 2006, vol. 9, pp. 311–318. https://doi.org/10.1111/j.1461-0248.2005.00877.x

    Article  CAS  PubMed  Google Scholar 

  12. Devoto, M., Bailey, S., Craze, P., and Memmott, J., Understanding and planning ecological restoration of plant-pollinator networks, Ecol. Lett., 2012, vol. 15, no. 4, pp. 319–328. https://doi.org/10.1111/j.1461-0248.2012.01740.x

    Article  PubMed  Google Scholar 

  13. Díaz, S., Fargione, J., Chapin, III, F.S., and Tilman, D., Biodiversity loss threatens human well-being, PLoS Biol., 2006, vol. 4, no. 8, p. e277. https://10.1371/journal.pbio.0040277

    Article  PubMed  PubMed Central  Google Scholar 

  14. Egwumah, F.A., Egwumah, P.O., and Edet, D.I., Paramount roles of wild birds as bioindicators of contamination, J. Avian Wildl. Biol., 2017, vol. 2, no. 1, pp. 194–200. https://doi.org/10.15406/ijawb.2017.02.00041

    Article  Google Scholar 

  15. Falk, D.A., Restoration ecology, resilience, and the axes of change1, Ann. Missouri Bot. Gard., 2017, vol. 102, no. 2, pp. 201–216. https://doi.org/10.3417/2017006

    Article  Google Scholar 

  16. Falk, D.A., Watts, A.C., and Thode, A.E., Scaling ecological resilience, Front. Ecol. Evol., 2019, p. 275. https://doi.org/10.3389/fevo.2019.00275

  17. Falk, D.A., van Mantgem, P.J., Keeley, J.E., Gregg, R.M., Guiterman, C.H., Tepley, A.J., Young, D.J.N., and Marshall, L.A., Mechanisms of forest resilience, For. Ecol. Manage., 2022, vol. 512, p. 120129. https://doi.org/10.1016/j.foreco.2022.120129

    Article  Google Scholar 

  18. Fleming, T.H., Life-history strategies, in Ecology of Small Mammals, D.M., Ed., Dordrecht: Springer Netherlands, 1979, pp. 1–61.

  19. Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., and Holling, C.S., Regime shifts, resilience, and biodiversity in ecosystem management, Annu. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711

    Article  Google Scholar 

  20. Gao, T., Nielsen, A.B., and Hedblom, M., Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe, Ecol. Ind., 2015, vol. 57, pp. 420–434. https://doi.org/10.1016/j.ecolind.2015.05.028

    Article  Google Scholar 

  21. Gravel, D., Albouy, C., and Thuiller, W., The meaning of functional trait composition of food webs for ecosystem functioning, Philos. Trans. R. Soc., B, 2016, vol. 371, no. 1694, p. 20150268. https://doi.org/10.1098/rstb.2015.0268

  22. Gross, N., Bagousse-Pinguet, Y.L., Liancourt, P., Berdugo, M., Gotelli, N.J., and Maestre, F.T., Functional trait diversity maximizes ecosystem multifunctionality, Nat. Ecol. Evol., 2017, vol. 1, no. 5, p. 0132. https://doi.org/10.1038/s41559-017-0132

  23. Hautier, Y., Tilman, D., Isbell, F., Seabloom, E.W., Borer, E.T., and Reich, P.B., Anthropogenic environmental changes affect ecosystem stability via biodiversity, Science, 2015, vol. 348, pp. 336–340. https://doi.org/10.1126/science.aaa1788

    Article  CAS  PubMed  Google Scholar 

  24. Hayward, G.F. and Phillipson, J., Community structure and functional role of small mammals in ecosystems, in Ecology of Small Mammals, Stoddart, D.M., Ed., London: Chapmen and Hall, 1979, pp. 135–211.

    Google Scholar 

  25. Hilmers, T., Friess, N., Bässler, C., Heurich, M., Brandl, R., Pretzsch, H., and Müller, J., Biodiversity along temperate forest succession, J. Appl. Ecol., 2018, vol. 55, no. 6, pp. 2756–2766. https://doi.org/10.1111/1365-2664.13238

    Article  Google Scholar 

  26. Hobbs, R.J., Higgs, E.S., and Harris, J.A., Novel ecosystems: implications for conservation and restoration, Trends Ecol. Evol., 2009, vol. 24, no. 11, pp. 599–605. https://doi.org/10.1016/j.tree.2009.05.012A

    Article  PubMed  Google Scholar 

  27. Hobbs, R.J., Higgs, E., Hall, C.M., Bridgewater, P., Chapin, III, F.S., Ellis, E.C., Ewe, J.J., Hallett, L.M., Harris, J., Hulvey, K.B., Jackson, S.T., Kennedy, P.L., Kueffer, C., Lach, L., Lantz, T.C., Lugo, A.E., Mascaro, J., Murphy, S.D., Nelson, C.R., Perring, M.P., Richardson, D.M., Seastedt, T.R., Standish, R.J., Starzomski, B.M., Suding, K.N., Tognetti, P.M., Yakob, L., and Yung, L., Managing the whole landscape: historical, hybrid, and novel ecosystems, Front. Ecol. Environ., 2014a, vol. 12, no. 10, pp. 557–564. https://doi.org/10.1890/130300

    Article  Google Scholar 

  28. Hobbs, R.J., Higgs, E.S., and Harris, J.A., Novel ecosystems: concept or inconvenient reality? A response to Murcia et al., Trends Ecol. Evol., 2014b, vol. 29, no. 12, pp. 645–646. https://doi.org/10.1016/j.tree.2014.09.006

    Article  PubMed  Google Scholar 

  29. Hooper, D.U., Chapin, III, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., and Wardle, D.A., Effects of biodiversity on ecosystem functioning: a consensus of current knowledge, Ecol. Monogr., 2005, vol. 75, no. 1, pp. 3–35. https://doi.org/10.1890/04-0922

    Article  Google Scholar 

  30. Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Pascal, A.N., and Eisenhauer, N., Biodiversity increases the resistance of ecosystem productivity to climate extremes, Nature, 2015a, vol. 526, pp. 574–577. https://doi.org/10.1038/nature15374

    Article  CAS  PubMed  Google Scholar 

  31. Isbell, F., Tilman, D., Polasky, S., and Loreau, M., The biodiversity dependent ecosystem service debt, Ecol. Lett., 2015b, vol. 18, pp. 119–134. https://doi.org/10.1111/ele.12393

    Article  PubMed  Google Scholar 

  32. Jackson, S.T. and Hobbs, R.J., Ecological restoration in the light of ecological history, Science, 2009, vol. 325, no. 5940, pp. 567–569. https://doi.org/10.1126/science.1172977

    Article  CAS  PubMed  Google Scholar 

  33. Jucker, T., Bouriaud, O., Avacaritei, D., and Coomes, D.A., Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes, Ecol. Lett., 2014, vol. 17, pp. 1560–1569. https://doi.org/10.1111/ele.12382

    Article  PubMed  Google Scholar 

  34. Kelly, J.R. and Harwell, M.A., Indicators of ecosystem recovery, Environ. Manage., 1990, vol. 14, pp. 527–545.

    Article  Google Scholar 

  35. Kryazhimskii, F.V., Animal habitats and regulation of energy balance, Ekologiya, 1992, no. 4, pp. 55–66.

  36. Kryazhimskii, F.V. and Bol’shakov, V.N., Functional–ecological role of biological diversity in populations and communities, Russ. J. Ecol., 2008, vol. 39, no. 6, pp. 383–389.

    Article  Google Scholar 

  37. Kueffer, C. and Kaiser-Bunbury, C.N., Reconciling conflicting perspectives for biodiversity conservation in the Anthropocene, Front. Ecol. Environ., 2014, vol. 12, no. 2, pp. 131–137. https://doi.org/10.1890/120201

    Article  Google Scholar 

  38. Lavorel, S. and Garnier, É., Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail, Funct. Ecology, 2002, vol. 16, no. 5, pp. 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664

    Article  Google Scholar 

  39. Litvinov, Yu.N., Soobshchestva i populyatsii melkikh mlekopitayushchikh v ekosistemakh Sibiri (Communities and Populations of Small Mammals in Siberian Ecosystems), Novosibirsk: TsERIS, 2001.

  40. Liu, J., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E., Pell, A.N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C.L., Schneider, S.H., and Taylor, W.W., Complexity of coupled human and natural systems, Science, 2007, vol. 317, no. 5844, pp. 1513–1516. https://doi.org/10.1126/science.1144004

    Article  CAS  PubMed  Google Scholar 

  41. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., and Wardle, D.A., Biodiversity and ecosystem functioning: current knowledge and future challenges, Science, 2001, vol. 294, no. 5543, pp. 804–808. https://doi.org/10.1126/science.1064088

    Article  CAS  PubMed  Google Scholar 

  42. Markova, A.K., van Kol’fskhoten, T., Bokhnkke, Sh., Kosintsev, P.A., Mol, I., Puzachenko, A.Yu., Simakova, A.N., Smirnov, N.G., Verpoorte, A., and Golovachev, I.B., Evolyutsiya ekosistem Evropy pri perekhode ot pleistotsena k golotsenu (24–8 tys. l. n.) (Evolution of European Ecosystems during the Transition from the Pleistocene to the Holocene (24–8 Thousand Years Ago)), Moscow: KMK, 2008.

  43. McCann, K., Protecting biostructure, Nature, 2007, vol. 446, p. 29.

    Article  CAS  PubMed  Google Scholar 

  44. McNab, B.K., Bioenergetics and the determination of home range size, Am. Nat., 1963, vol. 97, no. 894, pp. 133–140.

    Article  Google Scholar 

  45. Merritt, J.F., The Biology of Small Mammals, JHU Press, 2010.

    Book  Google Scholar 

  46. Mlambo, M.C., Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research, Biodiversity Conserv., 2014, vol. 23, pp. 781–790. https://doi.org/10.1007/s10531-014-0618-5

    Article  Google Scholar 

  47. Mori, A.S. and Kitagawa, R., Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: a global meta-analysis, Biol. Conserv., 2014, vol. 175, pp. 65–73. https://doi.org/10.1016/j.biocon.2014.04.016

    Article  Google Scholar 

  48. Mori, A.S., Furukawa, T., and Sasaki, T., Response diversity determines the resilience of ecosystems to environmental change, Biol. Rev., 2013, vol. 88, no. 2, pp. 349–364. https://doi.org/10.1111/brv.12004

    Article  PubMed  Google Scholar 

  49. Mori, A.S., Shiono, T., Haraguchi, T.F., Ota, A.T., Koide, D., Ohgue, T., Kitagawa, R., Maeshiro, R., Aung, T.T., Nakamori, T., Hagiwara, Y., Matsuoka, S., Ikeda, A., Hishi, T., Hobara, S., Mizumachi, E., Frisch, A., Thor, G., Fujii, S., Osono, T., and Gustafsson, L., Functional redundancy of multiple forest taxa along an elevational gradient: predicting the consequences of non-random species loss, J. Biogeogr., 2015, vol. 42, pp. 1383–1396. https://doi.org/10.1111/jbi.12514

    Article  Google Scholar 

  50. Mori, A.S., Lertzman, K.P., and Gustafsson, L., Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology, J. App. Ecol., 2017, vol. 54, no. 1, pp. 12–27. https://doi.org/10.1111/1365-2664.12669

    Article  Google Scholar 

  51. Morin, X., Fahse, L., de Mazancourt, C., Scherer-Lorenzen, M., and Bugmann, H., Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics, Ecol. Lett., 2014, vol. 17, pp. 1526–1535. https://doi.org/10.1111/ele.12357

    Article  PubMed  Google Scholar 

  52. Mouillot, D., Villeger, S., Scherer-Lorenzen, M., and Mason, N.W., Functional structure of biological communities predicts ecosystem multifunctionality, PLoS One, 2011, vol. 6, no. 3, p. e17476. https://doi.org/10.1371/journal.pone.0017476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murcia, C., Aronson, J., Kattan, G.H., Moreno-Mateos, D., Dixon, K., and Simberloff, D., A critique of the ‘novel ecosystem’ concept, Trends Ecol. Evol., 2014, vol. 29, no. 10, pp. 548–553. https://doi.org/10.1016/j.tree.2014.07.006

    Article  PubMed  Google Scholar 

  54. Novel Ecosystems: Intervening in the New Ecological World Order, Hobbs, R.J., Higgs, E.S., and Hall, C., Eds., Oxford, UK: Wiley-Blackwell, 2013.

    Google Scholar 

  55. Overmars, K.P., Schulp, C.J., Alkemade, R., Verburg, P.H., Temme, A.J., Omtzigt, N., and Schaminee, J.H., Developing a methodology for a species-based and spatially explicit indicator for biodiversity on agricultural land in the EU, Ecol. Indic., 2014, vol. 37, pp. 186–198. https://doi.org/10.1016/j.ecolind.2012.11.006

    Article  Google Scholar 

  56. Paniccia, C., Carranza, M.L., Frate, L., Di Febbraro, M., Rocchini, D., and Loy, A., Distribution and functional traits of small mammals across the mediterranean area: landscape composition and structure definitively matter, Ecol. Indic., 2022, vol. 135, p. 108550. https://doi.org/10.1016/j.ecolind.2022.108550

    Article  Google Scholar 

  57. Pearce, J. and Venier, L., Small mammals as bioindicators of sustainable boreal forest management, For. Ecol. Manage., 2005, vol. 208, nos. 1–3, pp. 153–175. https://doi.org/10.1016/j.foreco.2004.11.024

    Article  Google Scholar 

  58. Petchey, O.L. and Gaston, K.J., Functional diversity: back to basics and looking forward, Ecol. Lett., 2006, vol. 9, no. 6, pp. 741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x

    Article  PubMed  Google Scholar 

  59. Reiss, J., Bridle, J.R., Montoya, J.M., and Woodward, G., Emerging horizons in biodiversity and ecosystem functioning research, Trends Ecol. Evol., 2009, vol. 24, pp. 505–514. https://doi.org/10.1016/j.tree.2009.03.018

    Article  PubMed  Google Scholar 

  60. Sekercioglu, C.H., Ecosystem functions and services, in Conservation Biology for All, 2010, pp. 45–72.

  61. Shchipanov, N.A., Population resilience of small mammals. Why it is important and what it depends, Povolzh. Ekol. Zh., 2019, vol. 12, no. 4, pp. 503–523. https://doi.org/10.35885/1684-7318-2019-4-503-523

    Google Scholar 

  62. Shilova, S.A., Populyatsionnaya ekologiya kak osnova kontrolya chislennosti melkikh mlekopitayushchikh (Population Ecology as a Basis for Controlling the Number of Small Mammals), Moscow: Nauka, 1993.

  63. Sieg, C.H., Small mammals: pests or vital components of the ecosystem, Great Plains Wildlife Damage Control Workshop Proceedings, 1987, vol. 97, pp. 88–92.

  64. Simberloff, D., Flagships, umbrellas, and keystones: is single-species management passé in the landscape era?, Biol. Conserv., 1997, vol. 83, no. 3, pp. 247–257. https://doi.org/10.1016/S0006-3207(97)00081-5

    Article  Google Scholar 

  65. Singleton, G.R., Leirs, H., Hinds, L.A., and Zhang, Z., Ecologically-based management of rodent pests-re-evaluating our approach to an old problem, in Ecologically-Based Management of Rodent Pests, Canberra: Australian Centre for International Agricultural Research (ACIAR), 1999, vol. 31, pp. 17–29.

  66. Steele, B.B., Bayn, R.L., Jr., and Grant, C.V., Environmental monitoring using populations of birds and small mammals: analyses of sampling effort, Biol. Conserv., 1984, vol. 30, no. 2, pp. 157–172. https://doi.org/10.1016/0006-3207(84)90064-8

    Article  Google Scholar 

  67. Suárez-Castro, A.F., Raymundo, M., Bimler, M., and Mayfield, M.M., Using multi-scale spatially explicit frameworks to understand the relationship between functional diversity and species richness, Ecography, 2022, no. 6, p. e05844. https://doi.org/10.1111/ecog.05844

  68. Tchabovsky, A.V., Savinetskaya, L.E., Surkova, E.N., Ovchinnikova, N.L., and Kshnyasev, I.A., Delayed threshold response of a rodent population to human-induced landscape change, Oecologia, 2016, vol. 182, pp. 1075–1082. https://doi.org/10.1007/s00442-016-3736-9

    Article  PubMed  Google Scholar 

  69. Tilman, D., Isbell, F., and Cowles, J.M., Biodiversity and ecosystem functioning, Annu. Rev. Ecol. Evol. Syst., 2014, vol. 45, pp. 471–493. https://doi.org/10.1146/annurev-ecolsys-120213-091917

    Article  Google Scholar 

  70. Tittensor, D.P., Walpole, M., Hill, S.L., Boyce, D.G., Britten, G.L., Burgess, N.D., Butchart, S.H.M., Leadley, P.W., Regan, E.C., Alkemade, R., Baumung, R., Bellard, C., Bouwman, L., Bowles-Newark, N.J., Chenery, A.M., Cheung, W.W.L., Christensen, V., Cooper, H.D., Crowther, A.R., Dixon, M.J.R., Galli, A., Gaveau, V., Gregory, R.D., Gutierrez, N.L., Hirsch, T.L., Höft, R., Januchowski-Hartley, S.R., Karmann, M., Krug, C.B., Leverington, F.J., Loh, J., Lojenga, R.K., Malsch, K., Marques, A., Morgan, D.H.W., Mumby, P.J., Newbold, T., Noonan-Mooney, K., Pagad, S.N., Parks, B.C., Pereira, H.M., Robertson, T., Rondinini, C., Santini, L., Scharlemann, J.P.W., Schindler, S., Sumaila, U.R., Teh, L.S.L., van Kolck, J., Visconti, P., and Ye, Y., A mid-term analysis of progress toward international biodiversity targets, Science, 2014, vol. 346, no. 6206, pp. 241–244. https://doi.org/10.1126/science.1257484

    Article  CAS  PubMed  Google Scholar 

  71. Torre, I., Freixas, L., Arrizabalaga, A., and Díaz, M., The efficiency of two widely used commercial live-traps to develop monitoring protocols for small mammal biodiversity, Ecol. Indic., 2016, vol. 66, pp. 481–487. https://doi.org/10.1016/j.ecolind.2016.02.017

    Article  Google Scholar 

  72. Torre, I., Ribas, A., and Puig-Girones, R., Effects of post-fire management on a Mediterranean small mammal community, Fire, 2023, vol. 6, no. 1, p. 34. https://doi.org/10.3390/fire6010034

    Article  Google Scholar 

  73. Valencia, E., Maestre, F.T., Le Bagousse-Pinguet, Y., Quero, J.L., Tamme, R., Börger, L., Garcıa-Gomez, M., and Gross, N., Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands, New Phytol., 2015, vol. 206, no. 2, pp. 660–671. https://doi.org/10.1111/nph.13268

    Article  PubMed  Google Scholar 

  74. VanBuren, C.S. and Jarzyna, M.A., Trends in functional composition of small mammal communities across millennial time scales, Ecography, 2022, no. 7, p. e06096. https://doi.org/10.1111/ecog.06096

  75. Vandewalle, M., De Bello, F., Berg, M.P., Bolger, T., Dolédec, S., Dubs, F., Feld, C.K., Harrington, R., Harrison, P.A., Lavorel, S., Silva, P.M., Moretti, M., Niemelä, J., Santos, P., Sattler, T., Sousa, J.P., Sykes, M.T., Vanbergen, A.J., and Woodcock, B.A., Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms, Biol. Conserv., 2010, vol. 19, no. 10, pp. 2921–2947. https://doi.org/10.1007/s10531-010-9798-9

    Article  Google Scholar 

  76. Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., and Garnier, E., Let the concept of trait be functional!, Oikos, 2007, vol. 116, pp. 882–892.

    Article  Google Scholar 

  77. Vitousek, P.M., Mooney, H.A., Lubchenco, J., and Melillo, J.M., Human domination of Earth’s ecosystems, Science, 1997, vol. 277, no. 5325, pp. 494–499. https://doi.org/10.1126/science.277.5325.494

    Article  CAS  Google Scholar 

  78. Walker, B., Holling, C.S., Carpenter, S.R., and Kinzig, A., Resilience, adaptability and transformability in social–ecological systems, Ecol. Soc., 2004, vol. 9, no. 2. http://www.jstor.org/stable/26267673.

  79. Weiss, K.C. and Ray, C.A., Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides, Ecography, 2019, vol. 42, no. 12, pp. 2012–2020. https://doi.org/10.1111/ecog.04387

    Article  Google Scholar 

  80. Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M., and Jetz, W., EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals: Ecological Archives E095–178, Ecology, 2014, vol. 95, no. 7, p. 2027. https://doi.org/10.1890/13-1917.1

    Article  Google Scholar 

  81. Wright, J.P., Naeem, S., Hector, A., Lehman, C., Reich, P.B., Schmid, B., and Tilman, D., Conventional functional classification schemes underestimate the relationship with ecosystem functioning, Ecol. Lett., 2006, vol. 9, pp. 111–120. https://doi.org/10.1111/j.1461-0248.2005.00850.x

    Article  PubMed  Google Scholar 

  82. Wu, D., Xu, C., Wang, S., Zhang, L., and Kortsch, S., Why are biodiversity-ecosystem functioning relationships so elusive? Trophic interactions may amplify ecosystem function variability, J. Anim. Ecol., 2023, vol. 92, no. 2, pp. 367–376. https://doi.org/10.1111/1365-2656.13808

    Article  PubMed  Google Scholar 

  83. Zaitsev, M.V., Ecological and morphological features of the functioning of the chewing apparatus of shrews, in Evolyutsionnye faktory formirovaniya raznoobraziya zhivotnogo mira (Evolutionary Factors in the Formation of Faunal Diversity), Moscow: KMK, 2005, pp. 135–145.

Download references

Funding

This study was carried out within the framework of State Assignment no. AAAA-A18-118042490060-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Shchipanov.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human or animal subjects.

Additional information

Translated by L. Solovyova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchipanov, N.A., Kalinin, A.A. The Role of Biodiversity in the Functioning of Ecosystems: Paper 1. General Principles of Monitoring Ecosystems. Biol Bull Russ Acad Sci 51, 432–442 (2024). https://doi.org/10.1134/S1062359023605293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023605293

Keywords:

Navigation