Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter April 3, 2024

Conversion of elemental phosphorus under the electron beam irradiation

  • Natalia Tarasova EMAIL logo , Alexey Zanin , Alexander Ponomarev , Ilya Toropygin and Efrem Krivoborodov

Abstract

This research article describes the results of studies of the processes occurring under the electron beam irradiation of elemental phosphorus in an aqueous medium. Comparisons of the results of white phosphorus samples irradiation using electron accelerators with different technical parameters are presented. The structure of the obtained phosphorus-containing polymers was determined using MALDI mass spectrometry and X-ray fluorescence analysis. A scheme of the formation of macroparticles in the process of irradiation of elemental phosphorus by a beam of accelerated electrons in an aqueous medium is discussed.


Corresponding author: Natalia Tarasova, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia, e-mail:
Article note: A special collection of invited papers by recipients of the 2023 IUPAC Distinguished Women in Chemistry and Chemical Engineering Awards.

Award Identifier / Grant number: project no. 23-23-00543

Acknowledgment

The work was supported by the Russian Science Foundation, project no. 23-23-00543. The authors express their gratitude for the assistance in the preparation of the manuscript to the Network center for advanced research “Green Chemistry for Sustainable Development: from fundamental principles to new materials” and the D.I. Mendeleev Center for Collective Use.

References

[1] X. L. Huang, F. Zhao, Y. Qi, Y. Qiu, J. S. Chen, H. K. Liu, S. X. Dou, Z. M. Wang. Energy Storage Mater. 42, 193 (2021), https://doi.org/10.1016/j.ensm.2021.07.030.Search in Google Scholar

[2] H. Liu, S. Zhang, Q. Zhu, B. Cao, R. Chen, P. Zhang, N. Sun, B. Xu, F. Wu. J. Mater. Chem. A 7, 11205 (2019), https://doi.org/10.1039/C9TA02030F.Search in Google Scholar

[3] P. Santhoshkumar, N. Shaji, M. Nanthagopal, J. W. Park, C. Senthil, C. W. Lee. J. Power Sources 470, 228459 (2020), https://doi.org/10.1016/j.jpowsour.2020.228459.Search in Google Scholar

[4] F. Liberale, M. Fiore, R. Ruffo, R. Bernasconi, S. Shiratori, L. Magagnin. Sci. Rep. 10, 13233 (2020), https://doi.org/10.1038/s41598-020-70240-6.Search in Google Scholar PubMed PubMed Central

[5] X. Yang, Y. Peng, J. Hou, Y. Liu, X. Jian. Nanotechnol. Rev. 9, 1610 (2020), https://doi.org/10.1515/ntrev-2020-0120.Search in Google Scholar

[6] A. A. Vorfolomeeva, S. G. Stolyarova, I. P. Asanov, E. V. Shlyakhova, P. E. Plyusnin, E. A. Maksimovskiy, E. Y. Gerasimov, A. L. Chuvilin, A. V. Okotrub, L. G. Bulusheva. Nanomaterials 13, 153 (2023), https://doi.org/10.3390/nano13010153.Search in Google Scholar PubMed PubMed Central

[7] J. Smajic, A. Alazmi, A. Alzahrani, A. Emwas, P. M. F. J. Costa. J. Electroanal. Chem. 925, 116852 (2022), https://doi.org/10.1016/j.jelechem.2022.116852.Search in Google Scholar

[8] J. Zhou, W. Ye, X. Lian, Q. Shi, Y. Liu, X. Yang, L. Liu, D. Wang, J. Choi, J. Sun, R. Yang, M. Wang, M. H. Rummeli. Energy Storage Mater. 46, 20 (2022), https://doi.org/10.1016/j.ensm.2021.12.042.Search in Google Scholar

[9] Z. Cheng, Y. Wu, H. Huang. Solid State Ionics 389, 116098 (2023), https://doi.org/10.1016/j.ssi.2022.116098.Search in Google Scholar

[10] H. Yang, F. He, F. Liu, Z. Sun, Y. Shao, L. He, Q. Zhang, Y. Yu. Adv. Mater. 36, 2306512 (2024), https://doi.org/10.1002/adma.202306512.Search in Google Scholar PubMed

[11] L. Liu, X. Gao, X. Cui, B. Wang, F. Hu, T. Yuan, J. Li, L. Zu, H. Lian, X. Cui. Nanomaterials 13, 1060 (2023), https://doi.org/10.3390/nano13061060.Search in Google Scholar PubMed PubMed Central

[12] T. L. Kulova, A. M. Skundin. Russ. J. Electrochem. 56, 1 (2020), https://doi.org/10.1134/S1023193520010061.Search in Google Scholar

[13] S. Singh, S. K. Kansal. Appl. Mater. Today 26, 101345 (2022), https://doi.org/10.1016/j.apmt.2021.101345.Search in Google Scholar

[14] Y. Zhu, J. Ren, X. Zhang, D. Yang. Nanoscale 12, 13297 (2020), https://doi.org/10.1039/D0NR01748E.Search in Google Scholar PubMed

[15] G. Huang, W. Ye, C. Lv, D. S. Butenko, C. Yang, G. Zhang, P. Lu, Y. Xu, S. Zhang, H. Wang, Y. Zhu, D. Yang. J. Mater. Sci. Technol. 108, 18 (2022), https://doi.org/10.1016/j.jmst.2021.09.026.Search in Google Scholar

[16] L. Lu, M. Sun, T. Wu1, Q. Lu, B. Chen, C. H. Chan, H. Wong, B. Huang. Front. Chem. 11, 1197010 (2023), https://doi.org/10.3389/fchem.2023.1197010.Search in Google Scholar PubMed PubMed Central

[17] C. Wu, R. Zhu, W. Y. Teoh, Y. Liu, J. Deng, H. Dai, L. Jing, Y. H. Ng, J. C. Yu. Appl. Catal. B Environ. 312, 121428 (2022), https://doi.org/10.1016/j.apcatb.2022.121428.Search in Google Scholar

[18] S. Moradian, A. Badiei, G. M. Ziarani, F. Mohajer, R. S. Varma, S. Iravani. Environ. Res. 237, 116910 (2023), https://doi.org/10.1016/j.envres.2023.116910.Search in Google Scholar PubMed

[19] Y. Wang, S. Sun, J. Zhang, Y. L. Huang, W. Chen. SmartMat 2, 286 (2021), https://doi.org/10.1002/smm2.1055.Search in Google Scholar

[20] T. Seddik, M. Batouche. Bulk to low dimensional 2D thermoelectric materials: latest theoretical research and future view. in Progress in Nanoscale and Low-Dimensional Materials and Devices. Topics in Applied Physics, H. Ünlü, N.J.M. Horing (Eds.), Vol. 144, Springer, Cham (2022).10.1007/978-3-030-93460-6_20Search in Google Scholar

[21] X. Wu, L. Hu, D. Gu, G. Gao. J. Phys. Chem. C 125, 6341 (2021), https://doi.org/10.1021/acs.jpcc.0c11254.Search in Google Scholar

[22] J. Mo, Y. Xu, L. Zhu, W. Wei, J. Zhao. Angew. Chem. Int. Ed. 60, 12524 (2021), https://doi.org/10.1002/anie.202101486.Search in Google Scholar PubMed

[23] H. Song, J. Wang, B. Xiong, J. Hu, P. Zeng, X. Liu, H. Liang. Angew. Chem. Int. Ed. 134, e202117679 (2022), https://doi.org/10.1002/ange.202117679.Search in Google Scholar

[24] Y. Li, Q. Fang, J. Sheng, X. Hu, Y. Yang, Y. Zhang, L. Chen, J. Tan, Q. Yuan, W. Tan. ACS Mater. Lett. 5, 2028 (2023), https://doi.org/10.1021/acsmaterialslett.3c00256.Search in Google Scholar

[25] N. P. Tarasova, E. G. Krivoborodov, Y. O. Mezhuev. Dokl. Chem. 512, 217 (2023), https://doi.org/10.1134/S0012500823600670.Search in Google Scholar

[26] N. P. Tarasova, Y. V. Smetannikov. Dokl. Chem. 437, 53 (2011), https://doi.org/10.1134/S0012500811030049.Search in Google Scholar

[27] B. Sukhov, S. Malysheva, T. Vakul’skaya, V. Tirsky, E. Martynovich, Y. Smetannikov, N. Tarasova. ARKIVOC 13, 196 (2003), https://doi.org/10.3998/ark.5550190.0004.d21.Search in Google Scholar

[28] N. P. Tarasova, Y. V. Smetannikov, I. M. Artemkina. Phosphorus Sulfur Silicon Relat. Elem. 183, 586 (2008), https://doi.org/10.1080/10426500701765004.Search in Google Scholar

[29] N. P. Tarasova, Y. V. Smetannikov, A. S. Vilesov, A. A. Zanin. Pure Appl. Chem. 81, 2115 (2009), https://doi.org/10.1351/PAC-CON-08-10-14.Search in Google Scholar

[30] N. P. Tarasova, A. A. Zanin, Y. V. Smetannikov, A. S. Vilesov. C. R. Chim. 13, 1028 (2010), https://doi.org/10.1016/j.crci.2010.05.013.Search in Google Scholar

[31] N. P. Tarasova, Y. V. Smetannikov, A. A. Zanin. Dokl. Chem. 449, 111 (2013), https://doi.org/10.1134/S0012500813040010.Search in Google Scholar

[32] N. P. Tarasova, A. A. Zanin. Pure Appl. Chem. 91, 671 (2019), https://doi.org/10.1515/pac-2018-0716.Search in Google Scholar

[33] G. A. Teptereva, I. A. Chetvertneva, E. M. Movsumzade, M. V. Sevastyanova, O. A. Baulin, M. E. Loginova, S. I. Pakhomov, E. H. Karimov, M. P. Egorov, N. E. Nifantyev, E. I. Evstigneev, A. V. Vasiliev, A. I. Voloshin, V. V. Nosov, V. A. Dokichev, A. V. Fakhreeva, E. R. Babaev, S. Z. Rogovina, A. A. Berlin, G. Y. Kolchina, M. S. Voronov, D. V. Staroverov, I. A. Kozlovsky, R. A. Kozlovsky, N. P. Tarasova, A. A. Zanin, E. G. Krivoborodov, O. K. Karimov, V. R. Flid. IZV VUZ KHIM KH TEKH 64, 4 (2021), https://doi.org/10.6060/ivkkt.20216409.6465.Search in Google Scholar

[34] N. Tarasova, A. Zanin, P. Sobolev, A. Ivanov. Sulfur Silicon Relat. Elem. 197, 608 (2022), https://doi.org/10.1080/10426507.2021.2011885.Search in Google Scholar

[35] N. L. K. Thiher, S. M. Schissel, J. L. P. Jessop. J Polym. Sci. 58, 1011 (2020), https://doi.org/10.1002/pol.20190113.Search in Google Scholar

[36] W. Gibson, J. P. Patterson. Macromolecules 54, 4986 (2021), https://doi.org/10.1021/acs.macromol.0c02710.Search in Google Scholar

[37] A. Ashfaq, M. Clochard, X. Coqueret, C. Dispenza, M. S. Driscoll, P. Ulański, M. Al-Sheikhly. Polymers 12, 2877 (2020), https://doi.org/10.3390/polym12122877.Search in Google Scholar PubMed PubMed Central

[38] K. Sládková, J. Houška, J. Havel. Rapid Commun. Mass Spectrom. 23, 3114 (2009), https://doi.org/10.1002/rcm.4230.Search in Google Scholar PubMed

[39] Z. Yang, W. Li, H. Huang, S. Ren, Y. Men, F. Li, X. Yu, Q. Luo. Talanta 237, 122978 (2022), https://doi.org/10.1016/j.talanta.2021.122978.Search in Google Scholar PubMed

[40] M. B. O’Rourke, C. C. Smith, S. M. De La Monte, G. T. Sutherland, M. P. Padula. Curr. Protoc. Mol. Biol. 126, e86 (2019), https://doi.org/10.1002/cpmb.86.Search in Google Scholar PubMed PubMed Central

[41] W. Zhang, J. T. Andersson, H. J. Räder, K. Müllen. Carbon 95, 672 (2015), https://doi.org/10.1016/j.carbon.2015.08.057.Search in Google Scholar

[42] S. Chen, S. Lee, S. Lee. Polym. Int. 30, 461 (1993), https://doi.org/10.1002/pi.4990300408.Search in Google Scholar

[43] N. P. Tarasova, Y. V. Smetannikov, A. S. Vilesov, V. P. Shevchenko, V. M. Byakov. Dokl. Phys. Chem. 423, 335 (2008), https://doi.org/10.1134/S0012501608120051.Search in Google Scholar

[44] N. P. Tarasova, V. Y. Balitskii. Russ. J. Appl. Chem. 64, 1035 (1991).Search in Google Scholar

[45] G. Brauer. in Rukovodstvo po neorganicheskomu sintezu v 6 t, p. 272, Atomizdat, Moscow (1975).Search in Google Scholar

Published Online: 2024-04-03

© 2024 IUPAC & De Gruyter

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2024-0027/html
Scroll to top button