Skip to main content
Log in

Dual-mode colorimetric and fluorescent detection of cobalt ions based on N, B co-doped carbon quantum dots and p-phenylenediamine derived nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nitrogen, boron co-doped carbon quantum dots (gCQDs), and a coloration probe (PPD-NPs) with response to cobalt ions (Co2+) were prepared by using 4-hydroxyphenylboric acid as the common precursor, with ethylenediamine and p-phenylenediamine (PPD) adopted as nitrogen-doped reagents, respectively. A noticeable brown-to-purple color change can be observed with the addition of Co2+, and a broad absorption band emerges at 535 nm. At the same time, gCQDs, which is introduced as the fluorescence signal source, will be significantly quenched due to the enhanced inner filtration effect, induced by the overlap between the emission spectrum of gCQDs and the emerging absorption band. Therefore, a colorimetric/fluorescent dual-mode sensing probe for Co2+ is constructed by combining the recognition unit PPD-NPs and the fluorescent gCQDs into PPD-NP/gCQD. Under the optimized experimental conditions, the calculated limits of detection are 1.51 × 10−7 M and 3.75 × 10−7 M for the colorimetric mode and the fluorescence mode, respectively, well qualified for the determination of Co2+ maximum permitted level in drinking water. The feasibility of the proposed method has been verified in tap water, lake water, and black tea samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. He W, Xie YB, Yin Q, Zhao ZX, Shi L, Wang HQ (2022) A new “on-off-on” g-C3N4 nanosheets fluorescent sensor for 5-Br-PADAP and Co2+ under acidic conditions. New J Chem 46(4):1960–1971. https://doi.org/10.1039/d1nj03492h

    Article  CAS  Google Scholar 

  2. Jung JM, Lee SY, Kim C (2017) A novel colorimetric chemosensor for multiple target metal ions Fe2+, Co2+, and Cu2+ in a near-perfect aqueous solution: Experimental and theoretical studies. Sensor Actuat B-Chem 251:291–301. https://doi.org/10.1016/j.snb.2017.05.055

    Article  CAS  Google Scholar 

  3. Min CH, Na S, Shin JE, Kim JK, Jo TG, Kim C (2017) A new Schiff-based chemosensor for chromogenic sensing of Cu2+, Co2+ and S2- in aqueous solution: experimental and theoretical studies. New J Chem 41(10):3991–3999. https://doi.org/10.1039/c7nj00054e

    Article  CAS  Google Scholar 

  4. Patel E, Lynch C, Ruff V, Reynolds M (2012) Co-exposure to nickel and cobalt chloride enhances cytotoxicity and oxidative stress in human lung epithelial cells. Toxicol Appl Pharmacol 258(3):367–375. https://doi.org/10.1016/j.taap.2011.11.019

    Article  CAS  PubMed  Google Scholar 

  5. Xu D, Chen H, Lin QL, Li ZW, Yang T, Yuan ZQ (2017) Selective and sensitive colorimetric determination of cobalt ions using Ag-Au bimetallic nanoparticles. RSC Adv 7(27):16295–16301. https://doi.org/10.1039/c7ra00900c

    Article  CAS  Google Scholar 

  6. Baars J, Domenech T, Bleischwitz R, Melin HE, Heidrich O (2021) Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat Sustain 4(1):71–79. https://doi.org/10.1038/s41893-020-00607-0

    Article  Google Scholar 

  7. Crawford SE, Kim KJ, Baltrus JP (2022) A portable fiber optic sensor for the luminescent sensing of cobalt ions using carbon dots. J Mater Chem C 10(43):16506–16516. https://doi.org/10.1039/d2tc02560d

    Article  CAS  Google Scholar 

  8. Kim PA, Lee H, So H, Kim C (2020) A chelated-type colorimetric chemosensor for sensing Co2+ and Cu2+. Inorg Chim Acta 505:119502. https://doi.org/10.1016/j.ica.2020.119502

    Article  CAS  Google Scholar 

  9. Heena KR, Rani S, Malik AK, Kabir A, Furton KG (2017) Determination of cobalt(II), nickel(II) and palladium(II) Ions via fabric phase sorptive extraction in combination with high-performance liquid chromatography-UV detection. Sep Sci Technol 52(1):81–90. https://doi.org/10.1080/01496395.2016.1232273

    Article  CAS  Google Scholar 

  10. Minami T, Atsumi K, Ueda J (2003) Determination of cobalt and nickel by graphite-furnace atomic absorption spectrometry after coprecipitation with scandium hydroxide. Anal Sci 19(2):313–315. https://doi.org/10.2116/analsci.19.313

    Article  CAS  PubMed  Google Scholar 

  11. Smirnova SV, Ilin DV, Pletnev IV (2021) Extraction and ICP-OES determination of heavy metals using tetrabutylammonium bromide aqueous biphasic system and oleophilic collector. Talanta 221:121485. https://doi.org/10.1016/j.talanta.2020.121485

    Article  CAS  PubMed  Google Scholar 

  12. Celestina JJ, Tharmaraj P, Jeevika A, Sheela CD (2020) Fabrication of triazine based colorimetric and electrochemical sensor for the quantification of Co2+ ion. Microchem J 155:104692. https://doi.org/10.1016/j.microc.2020.104692

    Article  CAS  Google Scholar 

  13. Jellesen MS, Olsen CB, Ruff S, Spiewak R, Hamann D, Hamann CR, White IR, Johansen JD, Thyssen JP (2018) Electrochemical screening spot test method for detection of nickel and cobalt ion release from metal surfaces. Dermatitis 29(4):187–192. https://doi.org/10.1097/der.0000000000000389

    Article  CAS  PubMed  Google Scholar 

  14. Wang XY, Feng CX, Cong QM, Sun ZZ, Cai ZY, Fan CG, Pei LZ (2023) Facile synthesis of gadolinium vanadate nanowires for sensitive detection of cobalt ions. J Alloy Compd 966:171458. https://doi.org/10.1016/j.jallcom.2023.171458

    Article  CAS  Google Scholar 

  15. Sivaraman SP, Mohan AM (2022) Colorimetric probe-infused polymeric solid-state sensors for Co2+- specific visual detection and quantification. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.2c01190

    Article  Google Scholar 

  16. Fu X, Li H, Lv R, Hong D, Yang BY, Gu W, Liu X (2018) Synthesis of Mn2+ doped ZnS quantum dots/ZIF-8 composite and its applications as a fluorescent probe for sensing Co2+ and dichromate. J Solid State Chem 264:35–41. https://doi.org/10.1016/j.jssc.2018.04.021

    Article  CAS  Google Scholar 

  17. Wang S, Bao X, Gao B, Li M (2019) A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent “switch.” Dalton Trans 48(23):8288–8296. https://doi.org/10.1039/c9dt01186b

    Article  CAS  PubMed  Google Scholar 

  18. Khan A, Ezati P, Kim JT, Rhim JW (2023) Biocompatible carbon quantum dots for intelligent sensing in food safety applications: opportunities and sustainability. Mater Today Sustain 21:100306. https://doi.org/10.1016/j.mtsust.2022.100306

    Article  Google Scholar 

  19. Liu GN, Kong DH, Han JY, Zhou R, Gao Y, Wu ZP, Zhao LJ, Wang CG, Wang LJ, Lu GY (2021) Solvent-controlled synthesis of full-color carbon dots and its application as a fluorescent food-tasting sensor for specific recognition of jujube species. Sens Actuator B-Chem 342:129963. https://doi.org/10.1016/j.snb.2021.129963

    Article  CAS  Google Scholar 

  20. Tammina SK, Khan A, Rhim JW (2023) Advances and prospects of carbon dots for microplastic analysis. Chemosphere 313:137433. https://doi.org/10.1016/j.chemosphere.2022.137433

    Article  CAS  PubMed  Google Scholar 

  21. Tian M, Zhang JQ, Liu YM, Wang YT, Zhang Y (2021) One-pot synthesis of nitrogen-doped carbon dots for highly sensitive determination of cobalt ions and biological imaging. Spectroc Acta Pt A-Molec Biomolec Spectr 252:119541. https://doi.org/10.1016/j.saa.2021.119541

    Article  CAS  Google Scholar 

  22. Zhang XY, Li Y, Wang YY, Liu XY, Jiang FL, Liu Y, Jiang P (2022) Nitrogen and sulfur co-doped carbon dots with bright fluorescence for intracellular detection of iron ion and thiol. J Colloid Interface Sci 611:255–264. https://doi.org/10.1016/j.jcis.2021.12.069

    Article  CAS  PubMed  Google Scholar 

  23. Zhen SJ, Guo FL, Chen LQ, Li YF, Zhang Q, Huang CZ (2011) Visual detection of cobalt(II) ion in vitro and tissue with a new type of leaf-like molecular microcrystal. Chem Commun 47(9):2562–2564. https://doi.org/10.1039/c0cc03205k

    Article  CAS  Google Scholar 

  24. Huang AL, Hu AQ, Li L, Ma CQ, Yang TQ, Gao H, Zhu C, Cai ZC, Qiu XQ, Xu JZ, Shen JL, Zhong LY, Chen GQ (2023) Effect of Zn2+on emodin molecules studied by time-resolved fluorescence spectroscopy and quantum chemical calculations. Spectroc Acta Pt A-Molec Biomolec Spectr 289:122217. https://doi.org/10.1016/j.saa.2022.122217

    Article  CAS  Google Scholar 

  25. Abidin NHZ, Wongso V, Hui KC, Cho K, Sambudi NS, Ang WL, Saad B (2020) The effect of functionalization on rice-husks derived carbon quantum dots properties and cadmium removal. J Water Process Eng 38:101634. https://doi.org/10.1016/j.jwpe.2020.101634

    Article  Google Scholar 

  26. Wang YY, Hu XT, Li WT, Huang XW, Li ZH, Zhang W, Zhang XA, Zou XB, Shi JY (2020) Preparation of boron nitrogen co-doped carbon quantum dots for rapid detection of Cr(VI). Spectroc Acta Pt A-Molec Biomolec Spectr 243:118807. https://doi.org/10.1016/j.saa.2020.118807

    Article  CAS  Google Scholar 

  27. Xu S, Che S, Ma P, Zhang F, Xu L, Liu X, Wang X, Song D, Sun Y (2019) One-step fabrication of boronic-acid-functionalized carbon dots for the detection of sialic acid. Talanta 197:548–552. https://doi.org/10.1016/j.talanta.2019.01.074

    Article  CAS  PubMed  Google Scholar 

  28. Huang S, Yang EL, Yao JD, Liu Y, Xiao Q (2018) Red emission nitrogen, boron, sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and L-cysteine in complex biological fluids and living cells. Anal Chim Acta 1035:192–202. https://doi.org/10.1016/j.aca.2018.06.051

    Article  CAS  PubMed  Google Scholar 

  29. Wang CJ, Sun Q, Li CX, Tang DB, Shi HX, Liu EZ, Guo PQ, Xue WM, Fan J (2022) Biocompatible double emission boron nitrogen co-doped carbon quantum dots for selective and sensitive detection of Al3+ and Fe2+. Mater Res Bull 155:111970. https://doi.org/10.1016/j.materresbull.2022.111970

    Article  CAS  Google Scholar 

  30. Zhao XY, Wang LM, Liu Q, Chen M, Chen XQ (2021) Facile synthesis of B, N-doped CQDs as versatile fluorescence probes for sensitive detection of cobalt ions in environmental water and biological samples. Microchem J 163:105888. https://doi.org/10.1016/j.microc.2020.105888

    Article  CAS  Google Scholar 

  31. Liu YS, Li W, Wu P, Ma CH, Wu XY, Xu MC, Luo S, Xu Z, Liu SX (2019) Hydrothermal synthesis of nitrogen and boron co-doped carbon quantum dots for application in acetone and dopamine sensors and multicolor cellular imaging. Sens Actuator B-Chem 281:34–43. https://doi.org/10.1016/j.snb.2018.10.075

    Article  CAS  Google Scholar 

  32. Ustun O, Karadag SN, Mazlumoglu H, Yilmaz A, Yilmaz M (2023) pH-sensitive fluorescence emission of boron/nitrogen Co-doped carbon quantum dots. Coatings 13(2):456. https://doi.org/10.3390/coatings13020456

    Article  CAS  Google Scholar 

  33. Wang N, Wang MK, Yu Y, Yang GJ, Su XG (2020) Label-free fluorescence assay based on near-infrared B, N-doped carbon dots as a fluorescent probe for the detection of sialic acid. New J Chem 44(6):2350–2356. https://doi.org/10.1039/c9nj05981d

    Article  CAS  Google Scholar 

  34. Hu Q, Sun H, Liu L, Xiao L, Yang ZQ, Rao S, Gong X, Han J (2021) Development of an ultrasensitive spectrophotometric method for carmine determination based on fluorescent carbon dots. Food Addit Contam Part A-Chem 38(5):731–740. https://doi.org/10.1080/19440049.2021.1889045

    Article  CAS  Google Scholar 

  35. Wang L, Gong X, Bing QJ, Wang G (2018) A new oxadiazole-based dual-mode chemosensor: colorimetric detection of Co2+ and fluorometric detection of Cu2+ with high selectivity sensitivity. Microchem J 142:279–287. https://doi.org/10.1016/j.microc.2018.07.008

    Article  CAS  Google Scholar 

  36. Shi L, Chang D, Zhang G, Zhang C, Zhang Y, Dong C, Chu L, Shuang S (2019) Co(2+) detection, cell imaging, and temperature sensing based on excitation-independent green-fluorescent N-doped carbon dots. RSC Adv 9(70):41361–41367. https://doi.org/10.1039/c9ra09405a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng SJ, Zhang JQ, Liu YM, Wang YT, Xiao YT, Zhang Y (2022) One-pot synthesis of nitrogen-doped carbon dots for sensing of Co2+ and tetracycline antibiotics, biological imaging, and fluorescent inks. J Nanopart Res 24(2):44. https://doi.org/10.1007/s11051-022-05398-3

    Article  CAS  Google Scholar 

  38. Mahajan PG, Dige NC, Desai NK, Patil SR, Kondalkar VV, Hong SK, Lee KH (2018) Selective detection of Co(2+) by fluorescent nano probe: diagnostic approach for analysis of environmental samples and biological activities. Spectroc Acta Pt A-Molec Biomolec Spectr 198:136–144. https://doi.org/10.1016/j.saa.2018.03.004

    Article  CAS  Google Scholar 

  39. Liu SG, Luo D, Han L, Li NB, Luo HQ (2019) A hybrid materialcomposed of guanine-rich single stranded DNA and cobalt(III) oxyhydroxide (CoOOH) nanosheets as a fluorescentprobe for ascorbic acid via formation of a complex between G-quadruplex and thioflavin T. Microchim Acta 186(3):156. https://doi.org/10.1007/s00604-019-3279-y

    Article  CAS  Google Scholar 

  40. Zhang JB, Liu JY, Wang MK, Wang GN, Su XG (2021) A fluorometric assay for alpha-glucosidase activity based on quaternary AgInZnS QDs. Microchim Acta 188(7):227. https://doi.org/10.1007/s00604-021-04855-5

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [62375112], the Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX23_2520], and the National Natural Science Foundation of China [22004050].

Author information

Authors and Affiliations

Authors

Contributions

AH: conceptualization, methodology, writing—original draft; GC: project administration, funding acquisition, writing—review and editing; LL: supervision, writing—review and editing; CM: resources; TY: validation; HG: data curation; JG: resources; CZ: investigation; YW: data curation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Guoqing Chen.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10014 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, A., Chen, G., Li, L. et al. Dual-mode colorimetric and fluorescent detection of cobalt ions based on N, B co-doped carbon quantum dots and p-phenylenediamine derived nanoparticles. Microchim Acta 191, 233 (2024). https://doi.org/10.1007/s00604-024-06310-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06310-7

Keywords

Navigation