Skip to main content
Log in

Optimizing Process Parameters in Drilling of CFRP Laminates: A Combined MOORA–TOPSIS–VIKOR Approach

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Carbon fiber-reinforced plastics (CFRP) have excelled in mechanical performance, replacing metals in structural design. However, their challenging machinability especially in drilling for assembly necessitates careful optimization of process parameters for mass production efficiency and waste reduction. This study explores the optimization of the drilling process for carbon fiber-reinforced composite laminates with a stacking sequence of [0/–45/90/45]2s. Using the tungsten carbide twist drills, experiments were conducted on quasi-isotropic CFRP laminates with a thickness of 10 mm. The drilling process parameters, including spindle speed and feed rate, were systematically varied to investigate their influence on drilled hole defects. A three-axis CNC milling center equipped with a piezoelectric dynamometer captured thrust force and drilling torque signals, forming the basis of the experimental methodology. The research employs multi-criteria decision-making techniques, such as MOORA, TOPSIS, and VIKOR, to identify the optimal combination of parameters for minimizing defects and enhancing drilling efficiency. In this study, the synergy of these multi-criteria decision-making techniques establishes a novel framework, demonstrating their efficacy in addressing the challenges associated with CFRP laminate drilling. Quantitatively, the optimized drilling parameters, combination of high speed, low feed rate, and low point angle tool resulted in a remarkable 20% reduction in top surface delamination defects, coupled with a 15% improvement in circularity error and surface roughness, underscoring the effectiveness of the proposed optimization approach in enhancing the quality of drilled holes in CFRP laminates. A comparative assessment of the results reveals notable achievements, including a significant correlation of 0.986 between the TOPSIS and VIKOR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper, specifically in Table 1.

References

  1. T. Barik, K. Pal, S. Parimita et al., Monitoring of hole surface integrity in drilling of bi-directional woven carbon fiber reinforced plastic composites. Proc. IMechE Part C: J. Mech. Eng. Sci. 234, 2432–2458 (2020). https://doi.org/10.1177/0954406220906292

    Article  CAS  Google Scholar 

  2. D.F. Liu, Y.J. Tang, W.L. Cong, A review of mechanical drilling for composite laminates. Compos. Struct. 94, 1265–1279 (2012)

    Article  Google Scholar 

  3. M. Darecki, C. Edelstenne, T. Enders, et al., Flightpath 2050. Flightpath 2050 Europe’s Vision for Aviation 28 (2011). https://doi.org/10.2777/50266

  4. I. El-Sonbaty, U.A. Khashaba, T. Machaly, Factors affecting the machinability of GFR/epoxy composites. Compos. Struct. 63, 329–338 (2004). https://doi.org/10.1016/S0263-8223(03)00181-8

    Article  Google Scholar 

  5. T. Barik, K. Pal, Prediction of TiAlN- and TiN-coated carbide tool wear in drilling of bidirectional CFRP laminates using wavelet packets of thrust–torque signatures. J. Braz. Soc. Mech. Sci. Eng. 44, 1–30 (2022). https://doi.org/10.1007/s40430-022-03673-x

    Article  Google Scholar 

  6. T. Barik, K. Pal, Prediction of drilled hole quality in bidirectional woven carbon fiber reinforced plastic using wavelet packets of force–torque signals. J. Reinf. Plast. Compos. 40, 800–826 (2021). https://doi.org/10.1177/07316844211011757

    Article  CAS  Google Scholar 

  7. T. Barik, S. Parimita, K. Pal, Parametric Study and Process Monitoring on Drilling of CFRP Composites. In: Proceedings of 10th international Conference on Precision, Meso, Micro and Nano engineering (COPEN 10), pp. 953–957 (2017)

  8. L. Romoli, A.H.A. Lutey, Quality monitoring and control for drilling of CFRP laminates. J. Manuf. Process. 40, 16–26 (2019). https://doi.org/10.1016/j.jmapro.2019.02.028

    Article  Google Scholar 

  9. H. Çalişkan, B. Kurşuncu, C. Kurbanoĝlu, Y. Güven şevki, Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 45, 473–479 (2013). https://doi.org/10.1016/j.matdes.2012.09.042

    Article  Google Scholar 

  10. E.K. Zavadskas, Z. Turskis, A new additive ratio assessment (ARAS) method in multicriteria decision-making. Technol. Econ. Dev. Econ. 16, 159–172 (2010). https://doi.org/10.3846/tede.2010.10

    Article  Google Scholar 

  11. G.O. Odu, Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 23, 1449 (2019). https://doi.org/10.4314/jasem.v23i8.7

    Article  Google Scholar 

  12. G. Sapkota, S. Das, A. Sharma, R. Kumar Ghadai, Comparison of various multi-criteria decision methods for the selection of quality hole produced by ultrasonic machining process. Mater. Today Proc. 58, 702–708 (2022). https://doi.org/10.1016/j.matpr.2022.02.221

    Article  Google Scholar 

  13. T. Niranjan, B. Singaravel, S. Srinivasulu Raju, Optimization of hole quality parameters using TOPSIS method in drilling of GFRP composite. Mater. Today Proc. 62, 2109–2114 (2022). https://doi.org/10.1016/j.matpr.2022.03.042

    Article  Google Scholar 

  14. R. Osmond, Z. Mollahoseini, J. Singh et al., A group multicriteria decision making with ANOVA to select optimum parameters of drilling flax fibre composites: a case study. Compos. Part C Open Access (2021). https://doi.org/10.1016/j.jcomc.2021.100156

    Article  Google Scholar 

  15. M. Varatharajulu, M. Duraiselvam, M.B. Kumar et al., Multi criteria decision making through TOPSIS and COPRAS on drilling parameters of magnesium AZ91. J. Magnesium Alloys 10, 2857–2874 (2022). https://doi.org/10.1016/j.jma.2021.05.006

    Article  CAS  Google Scholar 

  16. H. Ho-Cheng, C.K.H. Dharan, Delamination during drilling in composite laminates. J. Eng. Ind. 112, 236 (1990). https://doi.org/10.1115/1.2899580

    Article  Google Scholar 

  17. D. Geng, Y. Liu, Z. Shao et al., Delamination formation, evaluation and suppression during drilling of composite laminates: a review. Compos. Struct. 216, 168–186 (2019). https://doi.org/10.1016/j.compstruct.2019.02.099

    Article  Google Scholar 

  18. T. Barik, K. Pal, P. Sahoo, K. Patra, Sensor-based strategies for accurate prediction of drilled hole surface integrity of CFRP/Al7075 hybrid stack. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2131945

    Article  Google Scholar 

  19. A. Shanian, O. Savadogo, TOPSIS multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell. J. Power. Sources 159, 1095–1104 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.092

    Article  CAS  Google Scholar 

  20. R.W. Saaty, The analytic hierarchy process-what it is and how it is used. Math. Modell. 9, 161–176 (1987). https://doi.org/10.1016/0270-0255(87)90473-8

    Article  Google Scholar 

  21. Q.P. Tran, V.N. Nguyen, S.C. Huang, Drilling process on CFRP: multi-criteria decision-making with entropy weight using grey-topsis method. Appl. Sci. (Switzerland) 10, 1–18 (2020). https://doi.org/10.3390/app10207207

    Article  CAS  Google Scholar 

  22. Deng, J.: Introduction to grey system theory. J. Grey Syst. 1.1, 1–24 (1989)

    Google Scholar 

  23. C.-P. Fung, Manufacturing process optimization for wear property of fiber-reinforced polybutylene terephthalate composites with grey relational analysis. Wear 254, 298–306 (2003)

    Article  CAS  Google Scholar 

  24. M. Durairaj, D. Sudharsun, N. Swamynathan, Analysis of process parameters in wire EDM with stainless steel using single objective Taguchi method and multi objective grey relational grade. Procedia Eng 64, 868–877 (2013). https://doi.org/10.1016/j.proeng.2013.09.163

    Article  CAS  Google Scholar 

  25. C.L. Lin, J.L. Lin, T.C. Ko, Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int. J. Adv. Manuf. Technol. 19, 271–277 (2002). https://doi.org/10.1007/s001700200034

    Article  Google Scholar 

  26. N. Tosun, Determination of optimum parameters for multi-performance characteristics in turning by using grey relational analysis. Int. J. Adv. Manuf. Technol. 28, 450–455 (2006). https://doi.org/10.1007/s00170-011-3857-6

    Article  Google Scholar 

  27. T. Barik, S.K. Jena, S. Gahir et al., Process parametric optimization in drilling of CFRP composites using GRA method. Mater. Today Proc. 39, 1281–1286 (2021). https://doi.org/10.1016/j.matpr.2020.04.220

    Article  Google Scholar 

  28. A. Krishnamoorthy, S. Rajendra Boopathy, K. Palanikumar, J. Paulo Davim, Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics. Measurement (Lond) 45, 1286–1296 (2012). https://doi.org/10.1016/j.measurement.2012.01.008

    Article  Google Scholar 

  29. U.A. Khashaba, I.A. El-Sonbaty, A.I. Selmy, A.A. Megahed, Machinability analysis in drilling woven GFR/epoxy composites: part I—effect of machining parameters. Compos. Part A Appl. Sci. Manuf. 41, 391–400 (2010). https://doi.org/10.1016/j.compositesa.2009.11.006

    Article  Google Scholar 

  30. M. Altin Karataş, A.R. Motorcu, H. Gökkaya, Optimization of machining parameters for kerf angle and roundness error in abrasive water jet drilling of CFRP composites with different fiber orientation angles. J. Braz. Soc. Mech. Sci. Eng. (2020). https://doi.org/10.1007/s40430-020-2261-2

    Article  Google Scholar 

  31. C. Soutis, Carbon fibre reinforced plastics in aircraft construction. Mater. Sci. Eng. A 412, 171–176 (2005). https://doi.org/10.1016/j.msea.2005.08.064

    Article  CAS  Google Scholar 

  32. S. Chakraborty, Applications of the MOORA method for decision making in manufacturing environment. Int. J. Adv. Manuf. Technol. 54, 1155–1166 (2011). https://doi.org/10.1007/s00170-010-2972-0

    Article  Google Scholar 

  33. M.S. Yazuar, S.A. Kristiawan, X. Xu et al., Application of the MOORA method for the evaluation of the industrial maintenance system. IOP Conf. Ser.: J. Phys.: Conf. Ser. 1126, 1–6 (2018)

    Google Scholar 

  34. J.R. San Cristóbal, Multi-criteria decision-making in the selection of a renewable energy project in spain: the Vikor method. Renew. Energy 36, 498–502 (2011). https://doi.org/10.1016/j.renene.2010.07.031

    Article  Google Scholar 

  35. A. Jahan, F. Mustapha, M.Y. Ismail et al., A comprehensive VIKOR method for material selection. Mater. Des. 32, 1215–1221 (2011). https://doi.org/10.1016/j.matdes.2010.10.015

    Article  CAS  Google Scholar 

  36. H. Hocheng, C.C. Tsao, The path towards delamination-free drilling of composite materials. J. Mater. Process. Technol. 167, 251–264 (2005). https://doi.org/10.1016/j.jmatprotec.2005.06.039

    Article  CAS  Google Scholar 

  37. T. Barik, K. Pal, Optimization of process variables in drilling of carbon fiber reinforced plastics using various multi criteria decision making approaches. Materwiss Werksttech 54, 45–68 (2023). https://doi.org/10.1002/mawe.202100300

    Article  CAS  Google Scholar 

  38. J. Xu, C. Li, M. Chen et al., An investigation of drilling high-strength CFRP composites using specialized drills. Int. J. Adv. Manuf. Technol. 103, 3425–3442 (2019). https://doi.org/10.1007/s00170-019-03753-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support and assistance provided by the Department of Mechanical Engineering at BIT, Bhubaneswar, the Department of Mechanical Engineering at MSE, Baripada, and the Department of Production Engineering at VSSUT, Burla. Their valuable support during the experiments and measurement of drilled hole quality features is sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Pal.

Ethics declarations

Conflict of Interest

The authors confirm that they have no direct or indirect financial or non-financial interests related to this work submitted for publication. Furthermore, they assert that there are no conflicts of interest among the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, T., Parida, S. & Pal, K. Optimizing Process Parameters in Drilling of CFRP Laminates: A Combined MOORA–TOPSIS–VIKOR Approach. Fibers Polym 25, 1859–1876 (2024). https://doi.org/10.1007/s12221-024-00531-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00531-6

Keywords

Navigation