Skip to main content
Log in

From Cirrhosis to the Dysbiosis (A Loop of Cure or Complications?)

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Gut dysbiosis and liver cirrhosis are two corelated complications that highly disturbs the metabolism of a normal human body. Liver cirrhosis is scarring of the hepatic tissue and gut dysbiosis is the imbalance in the microbiome of the gut. Gut dysbiosis in cirrhosis occurs due to increased permeability of the intestinal membrane which might induce immune responses and damage the normal functioning of the body. Dysbiosis can cause liver damage from cirrhosis and can further lead to liver failure by hepatocellular carcinoma. In this review we discuss if eubiosis can revert the poorly functioning cirrhotic liver to normal functioning state? A normal microbiome converts various liver products into usable forms that regulates the overgrowth of microbiome in the gut. The imbalance caused by dysbiosis retards the normal functioning of liver and increases the complications. To correct this dysbiosis, measures like use of antibiotics with probiotics and prebiotics are used. This correction of the gut microbiome serves as a ray of hope to recover from this chronic illness. In case of alcohol induced liver cirrhosis, intervention of microbes can possibly be helpful in modulating the addiction as well as associated complications like depression as microbes are known to produce and consume neurotransmitters that are involved in alcohol addiction. Hence a correction of gut liver brain axis using microbiome can be a milestone achieved not only for treatment of liver cirrhosis but also for helping alcohol addicts quit and live a healthy or at least a near healthy life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schuppan D, Afdhal NH (2008) Liver cirrhosis. Lancet (London, England) 371:838–851. https://doi.org/10.1016/S0140-6736(08)60383-9. (PMID: 18328931)

    Article  CAS  PubMed  Google Scholar 

  2. Sherlock S, Dooley J (2008) Diseases of the liver and biliary system. John Wiley & Sons

    Google Scholar 

  3. Triger DR, Wright R (1973) Hyperglobulinaemia in liver disease. Lancet (London, England) 1:1494–1496. https://doi.org/10.1016/s0140-6736(73)91827-8

    Article  CAS  PubMed  Google Scholar 

  4. Papadakis MA, Fraser CL, Arieff AI (1990) Hyponatraemia in patients with cirrhosis. Q J Med 76:675–688

    CAS  PubMed  Google Scholar 

  5. Peck-Radosavljevic M, Wichlas M, Zacherl J, Stiegler G, Stohlawetz P, Fuchsjäger M, Kreil A, Metz-Schimmerl S, Panzer S, Steininger R, Mühlbacher F, Ferenci P, Pidlich J, Gangl A (2000) Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production. Blood 95:795–801

    Article  CAS  PubMed  Google Scholar 

  6. Schaffner F, Poper H (1963) Capillarization of hepatic sinusoids in man. Gastroenterology 44:239–242. https://doi.org/10.1016/S0016-5085(63)80130-4

    Article  CAS  PubMed  Google Scholar 

  7. Yin C, Evason KJ, Asahina K, Stainier DY (2013) Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Investig 123:1902–1910. https://doi.org/10.1172/JCI66369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zisser A, Ipsen DH, Tveden-Nyborg P (2021) Hepatic stellate cell activation and inactivation in nash-fibrosis-roles as putative treatment targets? Biomedicines 9:365. https://doi.org/10.3390/biomedicines9040365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brandão DF, Ramalho LN, Ramalho FS, Zucoloto S, Martinelli A, Silva O (2006) Liver cirrhosis and hepatic stellate cells. Acta cirurgica brasileira 21:54–57. https://doi.org/10.1590/s0102-86502006000700013

    Article  PubMed  Google Scholar 

  10. Hautekeete ML, Geerts A (1997) The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Archiv Int J Pathol 430:195–207. https://doi.org/10.1007/BF01324802

    Article  CAS  Google Scholar 

  11. Chu AL, Schilling JD, King KR, Feldstein AE (2021) The power of single-cell analysis for the study of liver pathobiology. Hepatol (Baltim Md) 73:437–448. https://doi.org/10.1002/hep.31485

    Article  CAS  Google Scholar 

  12. Lee NY, Suk KT (2020) The role of the gut microbiome in liver cirrhosis treatment. Int J Mol Sci 22:199. https://doi.org/10.3390/ijms22010199. (PMID: 33379148)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R (2018) The gut–liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 15:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fukui H (2017) Gut microbiome-based therapeutics in liver cirrhosis: basic consideration for the next step. J Clin Transl Hepatol 5:249–260

    PubMed  PubMed Central  Google Scholar 

  15. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS (2014) Bile acids and the gut microbiome. Curr Opin Gastroenterol 30:332–338. https://doi.org/10.1097/MOG.0000000000000057

    Article  PubMed  PubMed Central  Google Scholar 

  16. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, Ogura Y, Hayashi T, Yokota A (2011) Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–1781. https://doi.org/10.1053/j.gastro.2011.07.046

    Article  CAS  PubMed  Google Scholar 

  17. Bajaj JS, Ridlon JM, Hylemon PB, Thacker LR, Heuman DM, Smith S, Sikaroodi M, Gillevet PM (2012) Linkage of gut microbiome with cognition in hepatic encephalopathy. American journal of physiology. Gastrointest Liver Physiol 302:G168–G175. https://doi.org/10.1152/ajpgi.00190.2011

    Article  CAS  Google Scholar 

  18. Arab JP, Martin-Mateos RM, Shah VH (2018) Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hep Intl 12:24–33. https://doi.org/10.1007/s12072-017-9798-x

    Article  Google Scholar 

  19. Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, Wang Y, Zhu B, Li L (2011) Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatol (Baltim Md) 54:562–572. https://doi.org/10.1002/hep.24423

    Article  Google Scholar 

  20. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, Noble NA, Unser AB, Daita K, Fisher AR, Sikaroodi M, Gillevet PM (2014) Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 60:940–947. https://doi.org/10.1016/j.jhep.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  21. Elwir S, Rahimi RS (2017) Hepatic encephalopathy: an update on the pathophysiology and therapeutic options. J Clin Transl Hepatol 5:142–151

    PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Qin N, Guo J, Qian G, Fang D, Shi D, Xu M, Yang F, He Z, Van Nostrand JD, Yuan T, Deng Y, Zhou J, Li L (2014) Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics 15:753. https://doi.org/10.1186/1471-2164-15-753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, Monteith P, Noble NA, Sikaroodi M, Gillevet PM (2012) Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. American J Physiol Gastrointest Liver Physiol 303:G675–G685. https://doi.org/10.1152/ajpgi.00152.2012

    Article  CAS  Google Scholar 

  24. Rutz M, Metzger J, Gellert T, Luppa P, Lipford GB, Wagner H, Bauer S (2004) Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34:2541–2550. https://doi.org/10.1002/eji.200425218

    Article  CAS  PubMed  Google Scholar 

  25. González-Navajas JM (2016) Inflammasome activation in decompensated liver cirrhosis. World J Hepatol 8:207–210. https://doi.org/10.4254/wjh.v8.i4.207

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ferrarese A, Passigato N, Cusumano C, Gemini S, Tonon A, Dajti E, Marasco G, Ravaioli F, Colecchia A (2021) Antibiotic prophylaxis in patients with cirrhosis: current evidence for clinical practice. World J Hepatol 13:840–852. https://doi.org/10.4254/wjh.v13.i8.840

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fukui H (2015) Gut-liver axis in liver cirrhosis: how to manage leaky gut and endotoxemia. World J Hepatol 7:425–442. https://doi.org/10.4254/wjh.v7.i3.425

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ginés P, Rimola A, Planas R, Vargas V, Marco F, Almela M, Forné M, Miranda ML, Llach J, Salmerón JM (1990) Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatol (Baltim Md) 12:716–724. https://doi.org/10.1002/hep.1840120416

    Article  Google Scholar 

  29. Campillo B, Dupeyron C, Richardet JP (2001) Epidemiology of hospital-acquired infections in cirrhotic patients: effect of carriage of methicillin-resistant Staphylococcus aureus and influence of previous antibiotic therapy and norfloxacin prophylaxis. Epidemiol Infect 127:443–450. https://doi.org/10.1017/s0950268801006288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vlachogiannakos J, Saveriadis AS, Viazis N, Theodoropoulos I, Foudoulis K, Manolakopoulos S, Karamanolis DG (2009) Intestinal decontamination improves liver haemodynamics in patients with alcohol-related decompensated cirrhosis. Aliment Pharmacol Ther 29:992–999. https://doi.org/10.1111/j.1365-2036.2009.03958.x

    Article  CAS  PubMed  Google Scholar 

  31. Kimer N, Meldgaard M, Hamberg O, Kronborg TM, Lund AM, Møller HJ, Ytting H (2022) The impact of rifaximin on inflammation and metabolism in alcoholic hepatitis: a randomized clinical trial. PLoS ONE 17:e0264278. https://doi.org/10.1371/journal.pone.0264278. (PMID: 35286322; PMCID: PMC8920190)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kitagawa R, Kon K, Uchiyama A, Arai K, Yamashina S, Kuwahara-Arai K, Kirikae T, Ueno T, Ikejima K (2019) Rifaximin prevents ethanol-induced liver injury in obese KK-Ay mice through modulation of small intestinal microbiota signature. American journal of physiology. Gastrointest Liver Physiol 317:G707–G715. https://doi.org/10.1152/ajpgi.00372.2018

    Article  CAS  Google Scholar 

  33. Sharma BC, Singh J (2016) Probiotics in management of hepatic encephalopathy. Metab Brain Dis 31:1295–1301. https://doi.org/10.1007/s11011-016-9826-x

    Article  PubMed  Google Scholar 

  34. McGee RG, Bakens A, Wiley K, Riordan SM, Webster AC (2011) Probiotics for patients with hepatic encephalopathy. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008716.pub2

    Article  PubMed  Google Scholar 

  35. Liu Y, Chen K, Li F, Gu Z, Liu Q, He L, Shao T, Song Q, Zhu F, Zhang L, Jiang M, Zhou Y, Barve S, Zhang X, McClain CJ, Feng W (2020) Probiotic Lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatol (Baltim Md.) 71:2050–2066. https://doi.org/10.1002/hep.30975

    Article  CAS  Google Scholar 

  36. Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, Puri P, Sterling RK, Luketic V, Stravitz RT, Siddiqui MS, Fuchs M, Thacker LR, Wade JB, Daita K, Sistrun S, White MB, Noble NA, Thorpe C, Kakiyama G, Pandak WM, Sikaroodi M, Gillevet PM (2014) Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment Pharmacol Ther 39:1113–1125. https://doi.org/10.1111/apt.12695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Malyar RM, Naseri E, Li H, Ali I, Farid RA, Liu D, Chen X (2021) Hepatoprotective effects of selenium-enriched probiotics supplementation on heat-stressed wistar rat through anti-inflammatory and antioxidant effects. Biolog Trace Elem Res 199:3445–3456. https://doi.org/10.1007/s12011-020-02475-3. (PMID: 33161525)

    Article  CAS  Google Scholar 

  38. Xia X, Chen J, Xia J, Wang B, Liu H, Yang L, Wang Y, Ling Z (2018) Role of probiotics in the treatment of minimal hepatic encephalopathy in patients with HBV-induced liver cirrhosis. J Int Med Res 46:3596–3604. https://doi.org/10.1177/0300060518776064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lunia MK, Sharma BC, Sharma P, Sachdeva S, Srivastava S (2014) Probiotics prevent hepatic encephalopathy in patients with cirrhosis: a randomized controlled trial. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc 12:1003–8.e1. https://doi.org/10.1016/j.cgh.2013.11.006

    Article  Google Scholar 

  40. Selicean S, Wang C, Guixé-Muntet S, Stefanescu H, Kawada N, Gracia-Sancho J (2021) Regression of portal hypertension: underlying mechanisms and therapeutic strategies. Hep Intl 15:36–50. https://doi.org/10.1007/s12072-021-10135-4

    Article  Google Scholar 

  41. Malaguarnera G, Giordano M, Nunnari G, Bertino G, Malaguarnera M (2014) Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives. World J Gastroenterol 20:16639–16648. https://doi.org/10.3748/wjg.v20.i44.16639

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fukui H (2021) Leaky gut and gut-liver axis in liver cirrhosis: clinical studies update. Gut and liver 15:666–676. https://doi.org/10.5009/gnl20032

    Article  CAS  PubMed  Google Scholar 

  43. Riggio O, Varriale M, Testore GP, Di Rosa R, Di Rosa E, Merli M, Romiti A, Candiani C, Capocaccia L (1990) Effect of lactitol and lactulose administration on the fecal flora in cirrhotic patients. J Clin Gastroenterol 12:433–436. https://doi.org/10.1097/00004836-199008000-00016

    Article  CAS  PubMed  Google Scholar 

  44. Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol 52:7577–7587. https://doi.org/10.1007/s13197-015-1921-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vidot H, Cvejic E, Finegan LJ, Shores EA, Bowen DG, Strasser SI, McCaughan GW, Carey S, Allman-Farinelli M, Shackel NA (2019) Supplementation with synbiotics and/or branched chain amino acids in hepatic encephalopathy: a pilot randomised placebo-controlled clinical study. Nutrients 11:1810. https://doi.org/10.3390/nu11081810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu Q, Duan ZP, Ha DK, Bengmark S, Kurtovic J, Riordan SM (2004) Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatol (Baltim Md) 39:1441–1449. https://doi.org/10.1002/hep.20194

    Article  Google Scholar 

  47. McLellan AT, Lewis DC, O’Brien CP, Kleber HD (2000) Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. JAMA 284:1689–1695. https://doi.org/10.1001/jama.284.13.1689

    Article  CAS  PubMed  Google Scholar 

  48. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052. https://doi.org/10.1073/pnas.1010529108

    Article  PubMed  Google Scholar 

  49. Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF (2015) Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiat 78:e7–e9. https://doi.org/10.1016/j.biopsych.2014.12.023

    Article  PubMed  Google Scholar 

  50. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133. https://doi.org/10.1016/j.brainres.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem Proc Acad Sci USSR Biochem sec 372:115–117

    CAS  Google Scholar 

  52. Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV (2009) Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl Biochem Microbiol 45:494–497. https://doi.org/10.1134/S0003683809050068

    Article  CAS  Google Scholar 

  53. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417. https://doi.org/10.1111/j.1365-2672.2012.05344.x

    Article  CAS  PubMed  Google Scholar 

  54. Cho YR, Chang JY, Chang HC (2007) Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 17:104–109

    CAS  PubMed  Google Scholar 

  55. Bircher J, Benhamou JP, McIntyre N, Rizzetto M, Rodés J (1999) Oxford textbook of clinical hepatology.

  56. Pirovino M, Linder R, Boss C, Köchli HP, Mahler F (1988) Cutaneous spider nevi in liver cirrhosis: capillary microscopical and hormonal investigations. Klin Wochenschr 66:298–302. https://doi.org/10.1007/BF01727516

    Article  CAS  PubMed  Google Scholar 

  57. Foutch PG, Sullivan JA, Gaines JA, Sanowski RA (1988) Cutaneous vascular spiders in cirrhotic patients: correlation with hemorrhage from esophageal varices. Am J Gastroenterol 83:723–726

    CAS  PubMed  Google Scholar 

  58. Masoodi I, Farooq O, Singh R, Ahmad N, Bhat M, Wani A (2009) Courveilhier baumgarten syndrome: a rare syndrome revisited. Int J Health Sci 3:97–99 (PMID: 21475517)

    Google Scholar 

  59. MUEHRCKE RC (1956) The finger-nails in chronic hypoalbuminaemia: a new physical sign. Br Med J 1:1327–1328. https://doi.org/10.1136/bmj.1.4979.1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Attali P, Ink O, Pelletier G, Vernier C, Jean F, Moulton L, Etienne JP (1987) Dupuytren’s contracture, alcohol consumption, and chronic liver disease. Arch Intern Med 147:1065–1067

    Article  CAS  PubMed  Google Scholar 

  61. Epstein O, Ajdukiewicz AB, Dick R, Sherlock S (1979) Hypertrophic hepatic osteoarthropathy. Clinical, roentgenologic, biochemical, hormonal and cardiorespiratory studies, and review of the literature. Am J Med 67:88–97. https://doi.org/10.1016/0002-9343(79)90078-0

    Article  CAS  PubMed  Google Scholar 

  62. Yoshiji H, Nagoshi S, Akahane T, Asaoka Y, Ueno Y, Ogawa K, Kawaguchi T, Kurosaki M, Sakaida I, Shimizu M, Taniai M, Terai S, Nishikawa H, Hiasa Y, Hidaka H, Miwa H, Chayama K, Enomoto N, Shimosegawa T, Takehara T, Koike K (2021) Evidence-based clinical practice guidelines for Liver Cirrhosis 2020. J Gastroenterol 56:593–619. https://doi.org/10.1007/s00535-021-01788-x

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schiff ER, Maddrey WC, Reddy KR (eds.) (2017) Schiff’s diseases of the liver. John Wiley & Sons.

  64. Del Campo JA, Gallego P, Grande L (2018) Role of inflammatory response in liver diseases: therapeutic strategies. World J Hepatol 10:1–7. https://doi.org/10.4254/wjh.v10.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhou WC, Zhang QB, Qiao L (2014) Pathogenesis of liver cirrhosis. World J Gastroenterol 20:7312–7324. https://doi.org/10.3748/wjg.v20.i23.7312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, Takei H, Muto A, Nittono H, Ridlon JM, White MB, Noble NA, Monteith P, Fuchs M, Thacker LR, Sikaroodi M, Bajaj JS (2013) Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 58:949–955. https://doi.org/10.1016/j.jhep.2013.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Flamm SL (2011) Rifaximin treatment for reduction of risk of overt hepatic encephalopathy recurrence. Ther Adv Gastroenterol 4:199–206. https://doi.org/10.1177/1756283X11401774

    Article  CAS  Google Scholar 

  68. Lv XY, Ding HG, Zheng JF, Fan CL, Li L (2020) Rifaximin improves survival in cirrhotic patients with refractory ascites: a real-world study. World J Gastroenterol 26:199–218. https://doi.org/10.3748/wjg.v26.i2.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mendoza YP, Rodrigues SG, Bosch J, Berzigotti A (2020) Effect of poorly absorbable antibiotics on hepatic venous pressure gradient in cirrhosis: a systematic review and meta-analysis. Dig liver Dis Off J Italian Soc Gastroenterol Italian Assoc Study Liver 52:958–965. https://doi.org/10.1016/j.dld.2020.06.048

    Article  CAS  Google Scholar 

  70. Li C, Meng M, Guo M, Wang M, Ju A, Wang C (2019) The polysaccharides from Grifola frondosa attenuate CCl4-induced hepatic fibrosis in rats via the TGF-β/Smad signaling pathway. RSC Adv 9:33684–33692. https://doi.org/10.1039/C9RA04679H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang K, Yang X, Wu Z, Wang H, Li Q, Mei H, You R, Zhang Y (2020) Dendrobium officinale polysaccharide protected CCl4-induced liver fibrosis through intestinal homeostasis and the LPS-TLR4-NF-κB signaling pathway. Front Pharmacol 11:240. https://doi.org/10.3389/fphar.2020.00240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiang YY, Chao JCJ (2018) Olive oil combined with Lycium barbarum polysaccharides attenuates liver apoptosis and inflammation induced by carbon tetrachloride in rats. J Funct Foods 48:329–336. https://doi.org/10.1016/j.jff.2018.07.029

    Article  CAS  Google Scholar 

  73. Wang Z, Zhang X, Zhu L, Yang X, He F, Wang T, Bao T, Lu H, Wang H, Yang S (2020) Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice. Int Immunopharmacol 78:106062. https://doi.org/10.1016/j.intimp.2019.106062

    Article  CAS  PubMed  Google Scholar 

  74. Kumar R, Sood U, Gupta V, Singh M, Scaria J, Lal R (2020) Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis. Indian J Microbiol 60:12–25

    Article  CAS  PubMed  Google Scholar 

  75. Singhvi N, Gupta V, Gaur M, Sharma V, Puri A, Singh Y, Dubey GP, Lal R (2020) Interplay of human gut microbiome in health and wellness. Indian J microbiol 60:26–36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The idea for the article was given by Nisha Kapoor. There is equal contribution of Aanchal Bharti and Isar Sharma for the conceptualization of study. Literature search and draft was prepared by Aanchal Bharti and Isar Sharma. Data analysis and revision was performed by Ritu Mahajan and Seema Langer. Article was critically revised by Nisha Kapoor.

Corresponding author

Correspondence to Nisha Kapoor.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article and have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, A., Sharma, I., Mahajan, R. et al. From Cirrhosis to the Dysbiosis (A Loop of Cure or Complications?). Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01267-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01267-w

Keywords

Navigation