Skip to main content
Log in

Secure symbol-level precoding for reconfigurable intelligent surface-aided cell-free networks

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

With the improvement in communication network density, inter-cell interference has become severe. Due to the blurring of boundaries, cell-free networks are considered as a solution. However, it faces some challenges, such as high energy consumption due to the deployment of a large number of base stations, and security issues in complex communication scenarios. To tackle these issues, we propose a novel modeling scheme involving symbol-level precoding and reconfigurable intelligent surfaces (RIS). This solution can reduce the base station transmission power while ensuring communication layer security. Then, we decompose the non-convex problem of modeling into two sub-problems and solve them iteratively. The first sub-problem is to design symbol-level precoding which can be realized by an efficient gradient descent algorithm. The second sub-problem is about solving the reflection coefficients of RIS, which can be obtained by a Riemann conjugate gradient algorithm. In simulations, our proposed method outperforms benchmark methods. While ensuring physical layer security, the power consumption of cell-free networks has been reduced by 6 dBm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data generated during the current study are available from the corresponding author on reasonable request.

References

  1. SShafi M, Molisch AF et al (2017) 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J Sel Areas Commun 35(6):1201–1221. https://doi.org/10.1109/JSAC.2017.2692307

    Article  Google Scholar 

  2. Khan TA, Yazdan A, Heath RW (2018) Optimization of power transfer efficiency and energy efficiency for wireless-powered systems with massive MIMO. IEEE Trans Wireless Commun 17(11):7159–7172. https://doi.org/10.1109/TWC.2018.2865727

    Article  Google Scholar 

  3. Hu Z, Chen C, Jin Y et al (2022) Hybrid-field channel estimation for extremely large-scale massive MIMO system. IEEE Commun Lett 27(1):303–307. https://doi.org/10.1109/LCOMM.2022.3219937

    Article  Google Scholar 

  4. Andrews JG, Zhang X et al (2016) Are we approaching the fundamental limits of wireless network densification? IEEE Commun Mag 54(10):184–190. https://doi.org/10.1109/MCOM.2016.7588290

    Article  Google Scholar 

  5. Lozano A, Heath RW, Andrews JG (2013) Fundamental limits of cooperation. IEEE Trans Inf Theory 59(9):5213–5226. https://doi.org/10.1109/TIT.2013.2253153

    Article  MathSciNet  Google Scholar 

  6. APapazafeiropoulos A, Kourtessis P et al (2020) Performance analysis of cell-free massive MIMO systems: a stochastic geometry approach. IEEE Trans Veh Technol 69(4):3523–3537. https://doi.org/10.1109/TVT.2020.2970018

    Article  Google Scholar 

  7. Wu S, Liu L et al (2021) Revenue-maximizing resource allocation for multitenant cell-free massive MIMO networks. IEEE Syst J 16(2):3410–3421. https://doi.org/10.1109/JSYST.2021.3072419

    Article  Google Scholar 

  8. Ngo HQ, Ashikhmin A et al (2017) Cell-free massive MIMO versus small cells. IEEE Trans Wirel Commun 16(3):1834–1850. https://doi.org/10.1109/TWC.2017.265551

    Article  Google Scholar 

  9. Xia X, Zhang D et al (2015) Hardware impairments aware transceiver for full-duplex massive MIMO relaying. IEEE Trans Signal Process 63(24):6565–6580. https://doi.org/10.1109/TSP.2015.2469635

    Article  MathSciNet  Google Scholar 

  10. Zhang X, Guo D et al (2019) Secure communications over cell-free massive MIMO networks with hardware impairments. IEEE Syst J 14(2):1909–1920. https://doi.org/10.1109/JSYST.2019.2919584

    Article  Google Scholar 

  11. Zhang Y, Xia W et al (2022) Secure transmission in cell-free massive MIMO with low-resolution DACs over Rician fading channels. IEEE Trans Commun 70(4):2606–2621. https://doi.org/10.1109/TCOMM.2022.3147241

    Article  Google Scholar 

  12. Guo H, Lau VK (2022) Uplink cascaded channel estimation for intelligent reflecting surface assisted multiuser MISO systems. IEEE Trans Signal Process 70:3964–3977. https://doi.org/10.1109/TSP.2022.3193626

    Article  MathSciNet  Google Scholar 

  13. Jin Y, Guo R et al (2022) Secure beamforming for IRS-assisted nonlinear SWIPT systems with full-duplex user. IEEE Commun Lett 26(7):1494–1498. https://doi.org/10.1109/LCOMM.2022.3171966

    Article  Google Scholar 

  14. Zhang Y, Di B et al (2020) Reconfigurable intelligent surface aided cell-free MIMO communications. IEEE Wirel Commun Lett 10(4):775–779. https://doi.org/10.1109/LWC.2020.3043132

    Article  Google Scholar 

  15. Shi E, Zhang J et al (2022) Spatially correlated reconfigurable intelligent surfaces-aided cell-free massive MIMO systems. IEEE Trans Veh Technol 71(8):9073–9077. https://doi.org/10.1109/TVT.2022.3175459

    Article  Google Scholar 

  16. Zhang Z, Dai L (2021) A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network. IEEE Trans Signal Process 69:4085–4101. https://doi.org/10.1109/TSP.2021.3088755

    Article  MathSciNet  Google Scholar 

  17. Huang C, Zappone A et al (2019) Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans Wirel Commun 18(8):4157–4170. https://doi.org/10.1109/TWC.2019.2922609

    Article  Google Scholar 

  18. Elhoushy S, Ibrahim M, Hamouda W (2021) Exploiting RIS for limiting information leakage to active eavesdropper in cell-free massive MIMO. IEEE Wirel Commun Lett 11(3):443–447. https://doi.org/10.1109/LWC.2021.3130169

    Article  Google Scholar 

  19. Masouros C, Zheng G (2015) Exploiting known interference as green signal power for downlink beamforming optimization. IEEE Trans Signal Process 63(14):3628–3640. https://doi.org/10.1109/TSP.2015.2430839

    Article  MathSciNet  Google Scholar 

  20. Khandaker MR, Masouros C, Wong KK (2018) Constructive interference based secure precoding: a new dimension in physical layer security. IEEE Trans Inf Forensics Secur 13(9):2256–2268. https://doi.org/10.1109/TIFS.2018.2815541

    Article  Google Scholar 

  21. Sun Y, Ng DWK et al (2018) Robust and secure resource allocation for full-duplex MISO multicarrier NOMA systems. IEEE Trans Commun 66(9):4119–4137. https://doi.org/10.1109/TCOMM.2018.2830325

    Article  Google Scholar 

  22. Alodeh M, Spano D et al (2018) Symbol-level and multicast precoding for multiuser multiantenna downlink: a state-of-the-art, classification, and challenges. IEEE Commun Surv Tutor 20(3):1733–1757. https://doi.org/10.1109/COMST.2018.2837001

    Article  Google Scholar 

  23. Khandaker MR, Masouros C, Wong KK (2018) Secure SWIPT by exploiting constructive interference and artificial noise. IEEE Trans Commun 67(2):1326–1340. https://doi.org/10.1109/TCOMM.2018.2874658

    Article  Google Scholar 

  24. Liu R, Li M et al (2020) Joint symbol-level precoding and reflecting designs for IRS-enhanced MU-MISO systems. IEEE Trans Wirel Commun 20(2):798–811. https://doi.org/10.1109/TWC.2020.3028371

    Article  Google Scholar 

  25. Alodeh M, Chatzinotas S, Ottersten B (2015) Constructive multiuser interference in symbol level precoding for the MISO downlink channel. IEEE Trans Signal Process 63(9):2239–2252. https://doi.org/10.1109/TSP.2015.2404302

    Article  MathSciNet  Google Scholar 

  26. Shao M, Li Q et al (2018) Minimum symbol error rate-based constant envelope precoding for multiuser massive MISO downlink. In: 2018 IEEE Statistical Signal Processing Workshop (SSP) pp 727-731. IEEE. https://doi.org/10.1109/SSP.2018.8450852

  27. Alodeh M, Chatzinotas S, Ottersten B (2017) Symbol-level multiuser MISO precoding for multi-level adaptive modulation. IEEE Trans Wirel Commun 16(8):5511–5524. https://doi.org/10.1109/TWC.2017.2712604

    Article  Google Scholar 

  28. Wei Z, Masouros C (2019) Robust secure precoding and antenna selection: a probabilistic optimization approach for interference exploitation. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp 2442–2446. IEEE. https://doi.org/10.1109/ICASSP.2019.8683680

  29. Jin Y, Liu C, Li Z (2022) Secure symbol-level precoding designs via intelligent reflecting surface. In: 2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) pp 1–6. IEEE. https://doi.org/10.1109/ICSPCC55723.2022.9984307

  30. Siddique U, Tabassum H, Hossain E (2017) Downlink spectrum allocation for in-band and out-band wireless backhauling of full-duplex small cells. IEEE Trans Commun 65(8):3538–3554. https://doi.org/10.1109/TCOMM.2017.2699183

    Article  Google Scholar 

  31. Liu R, Li M, Liu Q, Swindlehurst AL (2020) Secure symbol-level precoding in MU-MISO wiretap systems. IEEE Trans Inf Forensics Secur 15:3359–3373. https://doi.org/10.1109/TIFS.2020.2988127

    Article  Google Scholar 

  32. Huang Y, Palomar DP, Zhang S (2012) Lorentz-positive maps and quadratic matrix inequalities with applications to robust MISO transmit beamforming. IEEE Trans Signal Process 61(5):1121–1130. https://doi.org/10.1109/TSP.2012.2229276

    Article  MathSciNet  Google Scholar 

  33. Yu X, Xu D, Schober R (2019) MISO wireless communication systems via intelligent reflecting surfaces. In 2019 IEEE/CIC International Conference on Communications in China (ICCC) pp 735–740. IEEE. https://doi.org/10.1109/ICCChina.2019.8855810

Download references

Funding

This work was supported in part by the Key research and development projects in Henan Province (231111212500),in part by the National Science Foundation Council of China (61771006, 61976080), in part by the Key research projects of the university in Henan province of China (21A413002, 19A413006, 20B510001), in part by the Programs for Science and Technology Development of Henan Province (192102210254) and in part by the Innovation and Quality Improvement Program Project for Graduate Education of Henan University (SYL20060143).

Author information

Authors and Affiliations

Authors

Contributions

HY contributed to methodology, software, and investigation. ZL contributed to methodology, conceptualization, supervision, writing an original draft, software, and investigation. JY contributed to validation, formal analysis, writing-review and editing. ZH contributed to graphing, writing-review and editing. QP contributed to validation, writing-review and editing.

Corresponding author

Correspondence to Zewen Li.

Ethics declarations

Conflicts of interest

The data used in this paper has no potential conflicts of interest. And the data used have obtained permission to be used. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Real-valued formula conversion

By the definition of Eq. (10), the following equation is transformed into a real-valued equation

$$\begin{aligned} \begin{aligned}&\Re \left\{ \sum \limits _{b=1}^{B}{\tilde{{\textbf{H}}}_{b,k,p}^{H}{{{\textbf{x}}}_{m}}}{{e}^{-j\angle {{s}_{m,k}}}} \right\} \\&\quad = \Re \left\{ \tilde{{\textbf{H}}}_k^{T}{{{\textbf{x}}}_{m}} \right\} = \Re \left\{ \tilde{{\textbf{H}}}_k \right\} ^T\Re \left\{ {{{\textbf{x}}}_{m}} \right\} ^T - \Im \left\{ \tilde{{\textbf{H}}}_k \right\} ^T\Im \left\{ {{{\textbf{x}}}_{m}} \right\} ^T = \bar{{\textbf{H}}}_k^T{{\varvec{\Delta }}_1}{\bar{{\textbf{x}}}_m} \end{aligned} \end{aligned}$$

Similarly,

$$\begin{aligned} \begin{aligned}&\Im \left\{ \sum \limits _{b=1}^{B}{\tilde{{\textbf{H}}}_{b,k,p}^{H}{{{\textbf{x}}}_{m}}}{{e}^{-j\angle {{s}_{m,k}}}} \right\} =\bar{{\textbf{H}}}_k^T{{\varvec{\Delta }}_2}{\bar{{\textbf{x}}}_m} \\&\Re \left\{ \sum \limits _{b=1}^{B}{\tilde{{\textbf{H}}}_{b,e,p}^{H}{{{\textbf{x}}}_{m}}}{{e}^{-j\angle {{s}_{m,1}+\pi /2}}} \right\} =\bar{{\textbf{H}}}_e^T{{\varvec{\Delta }}_1}{\bar{{\textbf{x}}}_m} \\&\Im \left\{ \sum \limits _{b=1}^{B}{\tilde{{\textbf{H}}}_{b,e,p}^{H}{{{\textbf{x}}}_{m}}}{{e}^{-j\angle {{s}_{m,1}+\pi /2}}} \right\} =\bar{{\textbf{H}}}_e^T{{\varvec{\Delta }}_2}{\bar{{\textbf{x}}}_m} \end{aligned} \end{aligned}$$

Appendix B: Random distribution methods

The location coordinates of the User and the Eve are randomly generated using the following equations

$$\begin{aligned} \begin{aligned}&x = x_0+R_0L_\textrm{amp}\cos {(\textrm{angle})}\\&y = y_0+R_0L_\textrm{amp}\sin {(\textrm{angle})}\\ \end{aligned} \end{aligned}$$

Where \(x_0\) and \(y_0\) are the coordinates of the center point, \(R_0\) is the range radius, \(L_\textrm{amp}\) is a random number between 0 and 1, and angle is a random angle.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Li, Z., Jin, Y. et al. Secure symbol-level precoding for reconfigurable intelligent surface-aided cell-free networks. J Supercomput (2024). https://doi.org/10.1007/s11227-024-06059-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11227-024-06059-z

Keywords

Navigation