Skip to main content
Log in

A Novel Strategy for Screening of Secondary Metabolites in Ginkgo biloba Leaves by Ultra-Performance Liquid Chromatography–Tandem Information Dependent Acquisition Mass Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A novel and simple strategy was proposed for the screening of secondary metabolites in Ginkgo biloba leaves. The information dependent acquisition (IDA) mass spectrometry mode was introduced for ginkgolides and flavonoids detection innovatively. The strategy consists of a one-step extraction and a simple ultra-performance liquid chromatography (UPLC) tandem with an IDA mode mass spectrometry (UPLC-(IDA)MS) process. The specificity of the target compounds was achieved with the retention difference, combining high resolution of MS1 as well as MS2 results. The extraction efficiency of three extractants was compared. With only one extraction step, secondary metabolites in Ginkgo biloba leaves, including four ginkgolides, six flavonoids, and four biflavonoids, were identified. The co-elution of ginkgolide A and ginkgolide B as well as bilobalide and ginkgolide C was eliminated with the optimized UPLC program. A quantification algorithm was proposed for ginkgolides. The strategy was applied to monitor the evolution of secondary metabolites in the extract solution successfully. The developed strategy is a powerful tool to facilitate the screening of secondary metabolites in Ginkgo biloba leaves and its related products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Li, W. and Fitzloff, J.F., J. Pharm. Biomed. Anal., 2002, vol. 30, p. 67. https://doi.org/10.1016/S0731-7085(02)00201-7

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen, T. and Alzahrani, T., Ginkgo Biloba, Treasure Island, FL: StatPearls, 2022.

    Google Scholar 

  3. Yuan, Q., Wang, C., Shi, J., and Lin, Z., J. Ethnopharmacol., 2017, vol. 195, p. 1. https://doi.org/10.1016/j.jep.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  4. Li, C. and Wong, Y., Planta Med., 1997, vol. 63, p. 563. https://doi.org/10.1055/s-2006-957768

    Article  CAS  PubMed  Google Scholar 

  5. Forman, V., Luo, D., Geu-Flores, F., Lemcke, R., Nelson, D.R., Kampranis, S.C., Staerk, D., Møller, B.L., and Pateraki, I., Nat. Commun., 2022, vol. 13, p. 5143. https://doi.org/10.1038/s41467-022-32879-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu, X., Yang, J., Niu, W., Jia, W., Olaleye, O.E., Wen, Q., Duan, X., Huang, Y., Wang, F., Du, F., Zhong, C., Li, Y., Xu, F., Gao, Q., Li, L., and Li, C., Acta Pharmacol. Sin., 2018, vol. 39, p. 1935. https://doi.org/10.1038/s41401-018-0086-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bruno, C., Cuppini, R., Sartini, S., Cecchini, T., Ambrogini, P., and Bombardelli, E., Planta Med., 1993, vol. 59, p. 302. https://doi.org/10.1055/s-2006-959686

    Article  CAS  PubMed  Google Scholar 

  8. Pietri, S., Maurelli, E., Drieu, K., and Culcasi, M., J. Mol. Cell. Cardiol., 1997, vol. 29, p. 733. https://doi.org/10.1006/jmcc.1996.0316

    Article  CAS  PubMed  Google Scholar 

  9. Shi, C., Wu, F., Yew, D.T., Xu, J., and Zhu, Y., Apoptosis, 2010, vol. 15, p. 715. https://doi.org/10.1007/s10495-010-0492-x

    Article  CAS  PubMed  Google Scholar 

  10. Sloley, B.D., Urichuk, L.J., Morley, P., Durkin, J., Shan, J.J., Pang, P.K.T., and Coutts, R.T., J. Pharm. Pharmacol., 2010, vol. 52, p. 451. https://doi.org/10.1211/0022357001774075

    Article  Google Scholar 

  11. Liu, Z., Li, G., Zhang, Y., Jin, H., Liu, Y., Dong, J., Li, X., Liu, Y., and Liang, X., Molecules, 2022, vol. 27, p. 4733. https://doi.org/10.3390/molecules27154733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le, V.N.H., Lee, W., Kim, Y.H., Chae, G.H., Chin, Y.W., Kim, K.T., and Kang, J.S., Arab. J. Chem., 2017, vol. 10, p. 792. https://doi.org/10.1016/j.arabjc.2016.10.007

    Article  CAS  Google Scholar 

  13. Boateng, I.D., Food Chem., 2022, vol. 382, p. 132408. https://doi.org/10.1016/j.foodchem.2022.132408

    Article  CAS  PubMed  Google Scholar 

  14. Qiu, J., Chen, X., Li, Z., Wang, S., Wu, X., Li, Y., Yang, D., Yu, Y., Yin, X., and Tang, D., J. Chromatogr. B, 2015, vol. 997, p. 122. https://doi.org/10.1016/j.jchromb.2015.06.002

    Article  CAS  Google Scholar 

  15. Shen, C., Jin, X., Wu, M., Huang, X., Li, J., Huang, H., Li, F., Liu, J., Rong, G., and Song, S., Xenobiotica, 2020, vol. 50, p. 323. https://doi.org/10.1080/00498254.2019.1612124

    Article  CAS  PubMed  Google Scholar 

  16. Kongkiatpaiboon, S., Chewchinda, S., and Vongsak, B., Rev. Bras. Farmacogn., 2018, vol. 28, p. 145. https://doi.org/10.1016/j.bjp.2018.03.002

    Article  CAS  Google Scholar 

  17. Panichayupakaranant, P., Sakunpak, A., and Sakunphueak, A., J. Chromatogr. Sci., 2009, vol. 47, p. 197. https://doi.org/10.1093/chromsci/47.3.197

    Article  CAS  PubMed  Google Scholar 

  18. Ghomari, O., Sounni, F., Massaoudi, Y., Ghanam, J., Drissi Kaitouni, L.B., Merzouki, M., Benlemlih, M., Biotechnol Rep., 2019, vol. 23, p. e00347. https://doi.org/10.1016/j.btre.2019.e00347

    Article  Google Scholar 

  19. Oehrle, S.A., J. Liq. Chromatogr., 1995, vol. 18, p. 2855. https://doi.org/10.1080/10826079508009329

    Article  CAS  Google Scholar 

  20. Van Beek, T.A., Scheeren, H.A., Rantio, T., Melger, W.Ch., and Lelyveld, GP., J. Chromatogr. A, 1991, vol. 543, p. 375. https://doi.org/10.1016/S0021-9673(01)95789-9

    Article  CAS  Google Scholar 

  21. Biber, A. and Koch, E., Planta. Med., 1999, vol. 65, p. 192. https://doi.org/10.1055/s-2006-960467

    Article  CAS  PubMed  Google Scholar 

  22. Krzek, J., Czekaj, J.S., Rzeszutko, W., and Ekiert, R.J., Acta. Pol. Pharm., 2007, vol. 64, p. 303.

    CAS  PubMed  Google Scholar 

  23. Van Beek, T.A., Van Veldhuizen, A., Lelyveld, G.P., Piron, I., and Lankhorst, P.P., Phytochem. Anal., 1993, vol. 4, p. 261. https://doi.org/10.1002/pca.2800040604

    Article  CAS  Google Scholar 

  24. Pais, P., Moyano, E., Puignou, L., and Galceran, M.T., J. Chromatogr. A, 1997, vol. 778, p. 207. https://doi.org/10.1016/S0021-9673(97)00219-7

    Article  CAS  PubMed  Google Scholar 

  25. Li, J., Li, D., Hu, J., Bi, Y., Xiao, W., and Wang, Z., Biomed. Chromatogr., 2015, vol. 29, p. 1907. https://doi.org/10.1002/bmc.3515

    Article  CAS  PubMed  Google Scholar 

  26. Arce-López, B., Lizarraga, E., Flores-Flores, M., Irigoyen, Á., and González-Peñas, E., Talanta, 2020, vol. 206, p. 120193. https://doi.org/10.1016/j.talanta.2019.120193

    Article  CAS  PubMed  Google Scholar 

  27. Bhattarai, B., Steffensen, S.K., Staerk, D., Laursen, B.B., and Fomsgaard, I.S., Int. J. Mass Spectrom., 2022, vol. 474, p. 116815. https://doi.org/10.1016/j.ijms.2022.116815

    Article  CAS  Google Scholar 

  28. Wubshet, S.G., Liu, B., Kongstad, K.T., Böcker, U., Petersen, M.J., Li, T., Wang, J., and Staerk, D., Talanta, 2019, vol. 200, p. 279. https://doi.org/10.1016/j.talanta.2019.03.047

    Article  CAS  PubMed  Google Scholar 

  29. Whitman, J.D. and Lynch, K.L., Clin. Chem., 2019, vol. 65, p. 862. https://doi.org/10.1373/clinchem.2018.300756

    Article  CAS  PubMed  Google Scholar 

  30. Guo, J. and Huan, T., Anal. Chem., 2020, vol. 92, p. 8072. https://doi.org/10.1021/acs.analchem.9b05135

    Article  CAS  PubMed  Google Scholar 

  31. Varriale, F., Tartaglione, L., Cinti, S., Milandri, A., Dall’Ara, S., Calfapietra, A., and Dell’Aversano, C., Talanta, 2021, vol. 224, p. 121842. https://doi.org/10.1016/j.talanta.2020.121842

    Article  CAS  PubMed  Google Scholar 

  32. Domon, B. and Aebersold, R., Science, 2006, vol. 312, p. 212. https://doi.org/10.1126/science.1124619

    Article  CAS  PubMed  Google Scholar 

  33. Francotte, A., Esson, R., Abachin, E., Vanhamme, M., Dobly, A., Carpick, B., Uhlrich, S., Dierick, J.F., and Vanhee, C., Talanta, 2022, vol. 236, p. 122883. https://doi.org/10.1016/j.talanta.2021.122883

    Article  CAS  PubMed  Google Scholar 

  34. Hu, A., Noble, W.S., and Wolf-Yadlin, A., F1000Research, 2016, vol. 5, p. 419. https://doi.org/10.12688/f1000research.7042.1

    Article  Google Scholar 

  35. Van Beek, T.A., Bioorg. Med. Chem., 2005, vol. 13, p. 5001. https://doi.org/10.1016/j.bmc.2005.05.056

    Article  CAS  PubMed  Google Scholar 

  36. Liu, X.G., Wu, S.Q., Li, P., and Yang, H., J. Pharm. Biomed. Anal., 2015, vol. 113, p. 212. https://doi.org/10.1016/j.jpba.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  37. Lobstein-Guth, A., Briançon-Scheid, F., Victoire, C., Haag-Berrurier, M., and Anton, R., Planta. Med., 1988, vol. 54, p. 555. https://doi.org/10.1055/s-2006-962549

    Article  CAS  PubMed  Google Scholar 

  38. Wagner, H. and Bladt, S., in Plant Drug Analysis, Heidelberg: Springer, 1996, p. 195. https://doi.org/10.1007/978-3-642-00574-9_8

  39. Guo, J., Wu, Y., Jiang, M., Wu, C., and Wang, G., Food Res. Int., 2022, vol. 159, p. 111644. https://doi.org/10.1016/j.foodres.2022.111644

    Article  CAS  PubMed  Google Scholar 

  40. Sun, Y., Li, W., Fitzloff, J.F., and Van Breemen, R.B. J. Mass. Spectrom., 2005, vol. 40, p. 373. https://doi.org/10.1002/jms.795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, J., Li, D., Hu, J., Bi, Y., Xiao, W., and Wang, Z., Biomed. Chromatogr., 2015, vol. 29, p. 1907. https://doi.org/10.1002/bmc.3515

    Article  CAS  PubMed  Google Scholar 

  42. Wang, B., Lu, Y., Hu, X., Feng, J., Shen, W., Wang, R., and Wang, H., J. Agric. Food Chem., 2020, vol. 68, p. 14808. https://doi.org/10.1021/acs.jafc.0c04532

    Article  CAS  PubMed  Google Scholar 

  43. Wang, L.T., Fan, X.H., Jian, Y., Dong, M.Z., Yang, Q., Meng, D., and Fu, Y.J., J. Pharm. Biomed. Anal., 2019, vol. 170, p. 335. https://doi.org/10.1016/j.jpba.2019.03.058

    Article  CAS  PubMed  Google Scholar 

  44. Yuan, W., Wang, J., An, X., Dai, M., Jiang, Z., Zhang, L., Yu, S., and Huang, X., Chromatographia, 2021, vol. 84, p. 249. https://doi.org/10.1007/s10337-020-04002-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yao, X., Zhou, G.S., Tang, Y.P., Qian, Y.F., Guan, H.L., Pang, H., Zhu, S., Mo, X., Su, S.L., Jin, C., Qin, Y., Qian, D.W., and Duan, J.A., BioMed Res. Int., 2013, vol. 2013, p. 1. https://doi.org/10.1155/2013/582591

    Article  CAS  Google Scholar 

  46. Chen, X., Zhong, W., Shu, C., Yang, H., and Li, E. Nat. Prod. Res., 2021, vol. 35, p. 5498. https://doi.org/10.1080/14786419.2020.1788020

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Science and Technology Support Program of Jiangsu Province under Grant (BY2021462), Open Project of Jiangsu Key Laboratory for Bio-resources of Saline Soils under Grant (JKLBS201900X).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zeng, L. & Ding, H. A Novel Strategy for Screening of Secondary Metabolites in Ginkgo biloba Leaves by Ultra-Performance Liquid Chromatography–Tandem Information Dependent Acquisition Mass Spectrometry. J Anal Chem 79, 330–338 (2024). https://doi.org/10.1134/S1061934824030146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934824030146

Keywords:

Navigation