Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T04:11:57.569Z Has data issue: false hasContentIssue false

Scale-by-scale non-equilibrium with Kolmogorov-like scalings in non-homogeneous stationary turbulence

Published online by Cambridge University Press:  03 April 2024

P. Beaumard
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014, LMFL – Laboratoire de Mécanique des Fluides de Lille, Kampé de Fériet, F-59000 Lille, France
P. Bragança
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014, LMFL – Laboratoire de Mécanique des Fluides de Lille, Kampé de Fériet, F-59000 Lille, France
C. Cuvier
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014, LMFL – Laboratoire de Mécanique des Fluides de Lille, Kampé de Fériet, F-59000 Lille, France
K. Steiros
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
J.C. Vassilicos*
Affiliation:
Univ. Lille, CNRS, ONERA, Arts et Metiers Institute of Technology, Centrale Lille, UMR 9014, LMFL – Laboratoire de Mécanique des Fluides de Lille, Kampé de Fériet, F-59000 Lille, France
*
Email address for correspondence: john-christos.vassilicos@cnrs.fr

Abstract

An improved version of the non-equilibrium theory of non-homogeneous turbulence of Chen & Vassilicos (J. Fluid Mech., vol. 938, 2022, A7) predicts that an intermediate range of length scales exists where the interscale turbulence transfer rate, the two-point interspace turbulence transport rate and the two-point pressure gradient velocity correlation term in the two-point small-scale turbulent energy equation are all proportional to the turbulence dissipation rate and independent of length scale. Particle image velocimetry measurements in a field of view under the turbulence-generating impellers in a baffled water tank support these predictions and show that the measured small-scale turbulence is significantly non-homogeneous. The particle image velocimetry measurements also suggest that the rate with which large scales lose energy to the small scales in the two-point large-scale turbulent energy equation also appears to be approximately proportional to the turbulence dissipation rate and independent of length scale in the same intermediate range and that this rate may not balance the interscale turbulence transfer rate in the two-point small-scale turbulent energy equation because of turbulent energy transport caused by the non-homogeneity.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexakis, A. 2023 How far does turbulence spread? J. Fluid Mech. 977, R1.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2017 The turbulence cascade in the near wake of a square prism. J. Fluid Mech. 825, 315352.CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2020 The role of coherent structures and inhomogeneity in near-field inter-scale turbulent energy transfers. J. Fluid Mech. 896, A16.CrossRefGoogle Scholar
Apostolidis, A, Laval, J.P. & Vassilicos, J.C. 2023 Turbulent cascade in fully developed 2 turbulent channel flow. J. Fluid Mech. 967, A22.CrossRefGoogle Scholar
Baroud, C.N., Plapp, B.B., She, Z.-S. & Swinney, H.L. 2002 Anomalous self-similarity in a turbulent rapidly rotating fluid. Phys. Rev. Lett. 88 (11), 114501.CrossRefGoogle Scholar
Chen, J.G. & Vassilicos, J.C. 2022 Scalings of scale-by-scale turbulence energy in non-homogeneous turbulence. J. Fluid Mech. 938, A7.CrossRefGoogle Scholar
Christensen, K.T. 2004 The influence of peak-locking errors on turbulence statistics computed from PIV ensembles. Exp. Fluids 36 (3), 484497.CrossRefGoogle Scholar
Foucaut, J.M., George, W.K., Stanislas, M. & Cuvier, C. 2021 Optimization of a SPIV experiment for derivative moments assessment in a turbulent boundary layer. Exp. Fluids 62 (12), 244.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Germano, M. 2007 The elementary energy transfer between the two-point velocity mean and difference. Phys. Fluids 19 (8), 085105.CrossRefGoogle Scholar
Hill, R.J. 2001 Equations relating structure functions of all orders. J. Fluid Mech. 434, 379388.CrossRefGoogle Scholar
Hill, R.J. 2002 The approach of turbulence to the locally homogeneous asymptote as studied using exact structure-function equations. arXiv:physics/0206034.Google Scholar
Hosokawa, I. 2007 A paradox concerning the refined similarity hypothesis of Kolmogorov for isotropic turbulence. Prog. Theor. Phys. 118 (1), 169173.CrossRefGoogle Scholar
Keane, R.D. & Adrian, R.J. 1991 Optimization of particle image velocimeters: II. Multiple pulsed systems. Meas. Sci. Technol. 2 (10), 963974.CrossRefGoogle Scholar
Laizet, S., Nedić, J. & Vassilicos, J.C. 2015 Influence of the spatial resolution on fine-scale features in DNS of turbulence generated by a single square grid. Intl J. Comput. Fluid Dyn. 29 (3–5), 286302.CrossRefGoogle Scholar
Larssen, H.S. & Vassilicos, J.C. 2023 Spatio-temporal fluctuations of interscale and interspace energy transfer dynamics in homogeneous turbulence. J. Fluid Mech. 969, A14.CrossRefGoogle Scholar
Lavoie, P., Avallone, G., De Gregorio, F., Romano, G.P. & Antonia, R.A. 2007 Spatial resolution of PIV for the measurement of turbulence. Exp. Fluids 43 (1), 3951.CrossRefGoogle Scholar
Lecordier, B. & Trinité, M. 2004 Advanced PIV algorithms with image distortion validation and comparison using synthetic images of turbulent flow. In Particle Image Velocimetry: Recent Improvements (ed. M. Stanislas, J. Westerweel & J. Kompenhans), pp. 115–132. Springer.CrossRefGoogle Scholar
Meldi, M. & Vassilicos, J.C. 2021 Analysis of Lundgren's matched asymptotic expansion approach to the Kármán–Howarth equation using the eddy damped quasinormal Markovian turbulence closure. Phys. Rev. Fluids 6 (6), 064602.CrossRefGoogle Scholar
Nagata, S. 1975 Mixing: principles and applications. John Wiley & Sons, Halstead Press.Google Scholar
Obligado, M. & Vassilicos, J.C. 2019 The non-equilibrium part of the inertial range in decaying homogeneous turbulence. Europhys. Lett. 127 (6), 64004.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T. & Kompenhans, J. 2018 Particle Image Velocimetry: A Practical Guide. Springer International Publishing.CrossRefGoogle Scholar
Scarano, F. 2001 Iterative image deformation methods in PIV. Meas. Sci. Technol. 13, R1.CrossRefGoogle Scholar
Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12 (2), 221233.CrossRefGoogle Scholar
Steiros, K., Bruce, P.J.K., Buxton, O.R.H. & Vassilicos, J.C. 2017 a Effect of blade modifications on the torque and flow field of radial impellers in stirred tanks. Phys. Rev. Fluids 2 (9), 094802.CrossRefGoogle Scholar
Steiros, K., Bruce, P.J.K., Buxton, O.R.H. & Vassilicos, J.C. 2017 b Power consumption and form drag of regular and fractal-shaped turbines in a stirred tank. AIChE J. 63 (2), 843854.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J.L. 1972 A First Course in Turbulence. MIT.CrossRefGoogle Scholar
Willert, C.E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.CrossRefGoogle Scholar
Zhou, Y. & Vassilicos, J.C. 2020 Energy cascade at the turbulent/nonturbulent interface. Phys. Rev. Fluids 5 (6), 064604.CrossRefGoogle Scholar
Supplementary material: File

Beaumard et al. supplementary material

Beaumard et al. supplementary material
Download Beaumard et al. supplementary material(File)
File 1.2 MB