Skip to main content
Log in

Iterated monodromy group of a PCF quadratic non-polynomial map

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We study the postcritically finite non-polynomial map \(f(x)=\frac{1}{(x-1)^2}\) over a number field k and prove various results about the geometric \(G^{\textrm{geom}}(f)\) and arithmetic \(G^{\textrm{arith}}(f)\) iterated monodromy groups of f. We show that the elements of \(G^{\textrm{geom}}(f)\) are the ones in \(G^{\textrm{arith}}(f)\) that fix certain roots of unity by assuming a conjecture on the size of \(G^{\textrm{geom}}_n(f)\). Furthermore, we describe exactly for which \(a \in k\) the Arboreal Galois group \(G_a(f)\) and \(G^{\textrm{arith}}(f)\) are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ahmad, F., Benedetto, R.L., Cain, J., Carroll, G., Fang, L.: The arithmetic basilica: a quadratic PCF arboreal Galois group. J. Number Theory 238, 842–868 (2022)

    Article  MathSciNet  Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  3. Boston, N., Jones, R.: Arboreal Galois representations. Geom. Dedicata 124, 27–35 (2007)

    Article  MathSciNet  Google Scholar 

  4. Boston, N., Jones, R.: The image of an arboreal Galois representation. Pure Appl. Math. Q. 5(1), 213–225 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bouw, I.I., Ejder, Ö., Karemaker, V.: Dynamical Belyi maps and arboreal Galois groups. Manuscr. Math. 165(1–2), 1–34 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bridy, A., Doyle, J.R., Ghioca, D., Hsia, L.-C., Tucker, T.J.: A question for iterated Galois groups in arithmetic dynamics. Canad. Math. Bull. 64(2), 401–417 (2021)

    Article  MathSciNet  Google Scholar 

  7. Cullinan, J., Hajir, F.: Ramification in iterated towers for rational functions. Manuscr. Math. 137(3–4), 273–286 (2012)

    Article  MathSciNet  Google Scholar 

  8. Ejder, Özlem: Arithmetic monodromy groups of dynamical Belyi maps. In: Arithmetic, Geometry, Cryptography, and Coding Theory 2021, volume 779 of Contemp. Math., pp. 91–102. American Mathematical Society [Providence], RI [2022] (2022)

  9. Ferraguti, A., Ostafe, A., Zannier, U.: Cyclotomic and abelian points in backward orbits of rational functions. Adv. Math. 438, 109463 (2024)

    Article  MathSciNet  Google Scholar 

  10. Ferraguti, A., Pagano, C.: Constraining images of quadratic arboreal representations. Int. Math. Res. Not. IMRN 22, 8486–8510 (2020)

    MathSciNet  Google Scholar 

  11. Hamblen, S., Jones, R.: Roots of unity and higher ramification in iterated extensions (2022)

  12. Jones, R.: Galois representations from pre-image trees: an arboreal survey. In: Actes de la Conférence “Théorie des Nombres et Applications”, volume 2013 of Publ. Math. Besançon Algèbre Théorie Nr., pp. 107–136. Presses Univ. Franche-Comté, Besançon (2013)

  13. Jones, R., Levy, A.: Eventually stable rational functions. Int. J. Number Theory 13(9), 2299–2318 (2017)

    Article  MathSciNet  Google Scholar 

  14. Lukas, D., Manes, M., Yap, D.: A census of quadratic post-critically finite rational functions defined over \({\mathbb{Q} }\). LMS J. Comput. Math. 17(suppl. A), 314–329 (2014)

    Article  MathSciNet  Google Scholar 

  15. Odoni, R.W.K.: The Galois theory of iterates and composites of polynomials. Proc. Lond. Math. Soc. (3) 51(3), 385–414 (1985)

    Article  MathSciNet  Google Scholar 

  16. Odoni, R.W.K.: On the prime divisors of the sequence \(w_{n+1}=1+w_1\ldots w_n\). J. London Math. Soc. (2) 32(1), 1–11 (1985)

    Article  MathSciNet  Google Scholar 

  17. Odoni, R.W.K.: Realising wreath products of cyclic groups as Galois groups. Mathematika 35(1), 101–113 (1988)

    Article  MathSciNet  Google Scholar 

  18. Pink, R.: Profinite iterated monodromy groups arising from quadratic morphisms with infinite postcritical orbits (2013)

  19. Pink, R.: Profinite iterated monodromy groups arising from quadratic polynomials (2013)

  20. Stoll, M.: Galois groups over \({ Q}\) of some iterated polynomials. Arch. Math. (Basel) 59(3), 239–244 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to the referees for their invaluable feedback and corrections, particularly in relation to the suggestions concerning the structure and presentation of the introduction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekin Ozman.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ö. Ejder was supported by part by Tübitak and Marie Skłodowska-Curie actions grant 120C071.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejder, Ö., Kara, Y. & Ozman, E. Iterated monodromy group of a PCF quadratic non-polynomial map. manuscripta math. (2024). https://doi.org/10.1007/s00229-024-01549-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00229-024-01549-z

Mathematics Subject Classification

Navigation