Skip to main content
Log in

The DANSS Experiment: Recent Results and Perspective

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The DANSS experiment is a scintillation spectrometer of reactor antineutrinos placed at the Unit 4 reactor of the Kalinin Nuclear Power Plant about 300 km northwest of Moscow. The main fundamental aim of the experiment is search for sterile neutrinos. The experiment was commissioned in April 2016 and regular data taking has been carried out since October 2016. 7.7 million of inverse beta-decay events have been collected by March 2023. A vast exclusion area of the sterile neutrino parameters was set. In the region of the best sensitivity the limit reached \({\text{sin}}2{{\theta }^{2}} = 5 \times {{10}^{{ - 3}}}\). The reactor power has been monitored for 6.5 years. The dispersion that is not related to single measurement statistics is below 0.5%, which gives an upper estimate of the precision of the standard NPP power measurements at the level of at least 0.5%. New scintillator detectors designed to upgrade the DANSS facility were tested at an accelerator beam. Light yield better than 140 ph.e./MeV was obtained. This paper describes the results obtained during the last year and the facility upgrade plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. The statistical error is less than 0.1% and can be neglected.

  2. The average light yield of modern strips is 35 p.e./MeV.

REFERENCES

  1. Aguilar, A. et al. (LSND Collab.), Evidence for neutrino oscillations from the observation of appearance in a beam, Phys. Rev. D, 2001, vol. 64, p. 112007. https://doi.org/10.1103/PhysRevD.64.112007

  2. Aguilar Arevalo, A. et al. (MiniBooNE Collab.), Significant excess of electron-like events in the MiniBooNE short-baseline neutrino experiment, Phys. Rev. Lett., 2018, vol. 121, p. 221801. https://doi.org/10.1103/PhysRevLett.121.221801

  3. Kaether, F., Hampel, W., Heusser, G., Kiko, J., and Kirsten, T., Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B, 2010, vol. 685, pp. 47–54. https://doi.org/10.1016/j.physletb.2010.01.030

  4. Abdurashitov, J.N. et al. (SAGE Collab.), Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002–2007 data-taking period, Phys. Rev. C, 2009, vol. 80, p. 015807. https://doi.org/10.1103/PhysRevC.80.015807

  5. Barinov, V.V. et al. (BEST Collab.), Results from the Baksan Experiment on Sterile Transitions (BEST), Phys. Rev. Lett., 2022, vol. 128, p. 232501. https://doi.org/10.1103/PhysRevLett.128.232501

  6. Mention, G., Fechner, M., Lasserre, Th., Mueller, Th.A., Lhuillier, D., Cribier, M., and Letourneau, A., The reactor antineutrino anomaly, Phys. Rev. D, 2011, vol. 83, p. 073006. https://doi.org/10.1103/PhysRevD.83.073006

  7. Serebrov, A.P., Ivochkin, V.G., Samoilov, R.M., et al., JETP Lett., 2019, vol. 109, p. 213. https://doi.org/10.1134/S0021364019040040

  8. Argüelles, C.A. et al. (MicroBooNE Collab.), MicroBooNE and the interpretation of the MiniBooNE low-energy excess, Phys. Rev. Lett., 2022, vol. 128, p. 241802. https://doi.org/10.1103/PhysRevLett.128.241802

  9. Alekseev, I. et al. (DANSS Collab.), Search for sterile neutrinos at the DANSS experiment, Phys. Lett. B, 2018, vol. 787, pp. 56–63. https://doi.org/10.1016/j.physletb.2018.10.038

  10. Estienne, M., Fallot, M., Algora, A., Briz-Monago, J., Bui, V.M., Cormon, S., Gelletly, W., Giot, L., Guadilla, V., Jordan, D., Le Meur, L., Porta, A., Rice, S., Rubio, B., Tain, J.L., Valencia, E., and Zakari-Issoufou, A.-A., Updated summation model: An improved agreement with the Daya Bay antineutrino fluxes, Phys. Rev. Lett., 2019, vol. 123, p. 022502. https://doi.org/10.1103/PhysRevLett.123.022502

  11. Kopeikin, V., Skorokhvatov, M., and Titov, O., Reevaluating reactor antineutrino spectra with new measurements of the ratio between U235 and Pu239 spectra, Phys. Rev. D, 2021, vol. 104, p. L071301. https://doi.org/10.1103/PhysRevD.104.L071301

  12. Danilov, M.V. and Skrobova, N.A., JETP Lett., 2020, vol. 112, p. 452. https://doi.org/10.1134/S0021364020190066

  13. Giunti, C., Li, Y.F., Ternes, C.A., and Zhang, Y.Y., Neutrino-4 anomaly: Oscillations or fluctuations?, Phys. Lett. B, 2021, vol. 816, p. 136214. https://doi.org/10.1016/j.physletb.2021.136214

  14. Alekseev, I. et al. (DANSS Collab.), DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator, JINST, 2016, vol. 11, p. P11011. https://doi.org/10.1088/1748-0221/11/11/P11011

  15. Alekseev, I. et al. (DANSS Collab.), Recent results from DANSS, PoS, 2023, vol. 421, p. 017. https://doi.org/10.22323/1.421.0017

  16. Alekseev, I. et al. (DANSS Collab.), Phys. At. Nucl., 2019, vol. 82, no. 5, p. 415. https://doi.org/10.1134/S1063778819050041

  17. Skrobova, N.A., Bull. Lebedev Phys. Inst., 2020, vol. 47, no. 9, p. 271. https://doi.org/10.3103/S1068335620090067

  18. Qian, X., Tan, A., Ling, J.J., et al., The Gaussian CLs method for searches of new physics, Nucl. Instrum. Methods, A, 2016, vol. 827, pp. 63–78. https://doi.org/10.1016/j.nima.2016.04.089

  19. Skrobova, N.A., New results of the DANSS experiment taking into account the absolute antineutrino counting depending on distance, Bull. Lebedev Phys. Inst., 2023, vol. 50, pp. 566–572. https://doi.org/10.3103/S1068335623120151

  20. Skrobova, N. et al. (DANSS Collab.), Statistical data analysis in the DANSS experiment, J. Phys. Conf. Ser., 2020, vol. 1690, p. 012173. https://doi.org/10.1088/1742-6596/1690/1/012173

  21. Huber, P., Determination of antineutrino spectra from nuclear reactors, Phys. Rev. C, 2011, vol. 84, p. 024617. https://doi.org/10.1103/PhysRevC.84.024617

  22. Mueller, Th.A., Lhuillier, D., Fallot, M., Letourneau, A., Cormon, S., Fechner, M., Giot, L., Lasserre, T., Martino, J., Mention, G., Porta, A., and Yermia, F., Improved predictions of reactor antineutrino spectra, Phys. Rev. C, 2011, vol. 83, p. 054615. https://doi.org/10.1103/PhysRevC.83.054615

  23. Alekseev, I.G., Kalinkin, D.V., Machikhilyan, I.V., Nesterov, V.M., Pogorelov, N.A., Rusinov, V.Yu., Svirida, D.N., Starostin, A.S., and Tarkovsky, E.I., Instrum. Exp. Tech., 2018, vol. 61, no. 3, p. 328. https://doi.org/10.1134/S002044121803003X

  24. Alekseev, I. et al. (DANSS Collab.), Optimized scintillation strip design for the DANSS upgrade, JINST, 2022, vol. 17, p. P04009. https://doi.org/10.1088/1748-0221/17/04/P04009

  25. Alekseev, I., Danilov, M., Rusinov, V., Samigullin, E., Svirida, D., and Tarkovsky, E., The performance of a new Kuraray wavelength shifting fiber YS-2, J. Instrum., 2022, vol. 17, p. P01031. https://doi.org/10.1088/1748-0221/17/01/P01031

  26. Ma, X.B., Zhong, W.L., Wang, L.Z., Chen, Y.X., and Cao, J., Improved calculation of the energy release in neutron-induced fission, Phys. Rev. C, 2013, vol. 88, p. 014605. https://doi.org/10.1103/PhysRevC.88.014605

Download references

ACKNOWLEDGMENTS

The DANSS Collaboration is grateful to the Kalinin NPP Administration and the staff of the Radiation Safety Department for their constant help and support

Funding

This work was supported by the Russian Science Foundation grant no. 23-12-00085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Alekseev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by D. Sventsitsky

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on the presentation given by the author on behalf of the DANSS Collaboration at the European Physical Society Conference on High Energy Physics (EPS-HEP2023), August 21–25, 2023, Hamburg, Germany.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, I.G. The DANSS Experiment: Recent Results and Perspective. Bull. Lebedev Phys. Inst. 51, 8–15 (2024). https://doi.org/10.3103/S1068335623601796

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335623601796

Keywords:

Navigation