Skip to main content
Log in

Integrating multi-source datasets in exploring the covariation of gross primary productivity (GPP) and solar-induced chlorophyll fluorescence (SIF) at an Indian tropical forest flux site

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Accurate measurement and monitoring of ecosystem productivity play a pivotal role in comprehending the intricate dynamics of the Earth system, particularly in the light of anthropogenic forcing. Sun-induced chlorophyll fluorescence (SIF), serving as a proxy, has garnered attention for its potential to elucidate the dynamics of terrestrial productivity by the existence of its mechanistic link with photosynthesis. Nevertheless, physiological mechanisms that regulate the relationship between the dynamics of gross primary productivity (GPP) and SIF remain shrouded in mystery. To better accommodate the research community on GPP–SIF relation, our study attempts to offer potential results by integrating multi-source Earth observation SIF and in-situ eddy flux datasets at an ecosystem level in India. The results elucidate that the studied ecosystem consistently acted as a steady CO2 sink over the observed period, displaying a prominent double-hump seasonality and a solid correlation with SIF. Notably, this correlation was synchronous with the daily transitions of GPP. The integration of multi-source carbon fluxes and SIF datasets demonstrated a strong agreement with the in-situ data, reinforcing the reliability of our results. Our redundancy analysis by threshold binning underscores the significant positive influence of vapour pressure deficit (VPD) and photosynthetically active radiation (PAR), critical factors driving GPP and SIF, across a spectrum of temporal scales, ranging from the transient fluctuations of a day to annual panoramas. In essence, our study advocates for the synergistic utilisation of diverse datasets to unravel the underlying processes governing the relationship between GPP and SIF at multiple temporal scales. Our results and analyses are poised to propel interdisciplinary research forward by introducing novel dimensions to the GPP–SIF relationship in the Indian subcontinent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Except for the in-situ eddy covariance data, which were processed with EddyPro (version 7.0.6, LI-COR Inc.) and TOVI (version 2.9.0, LI-COR Inc.), all the datasets used in this study are publicly available and can be accessed from the following web links. SMAP L4C data products: https://n5eil01u.ecs.nsidc.org/SMAP/SPL4CMDL.007/ (Kimball et al. 2021); CSIF: https://osf.io/8xqy6‌/files/ (Zhang et al. 2018); GOSIF‌: https://data.globalecology.sr.unh.edu/data/GOSIF_v2/8day/ (Li and Xiao 2019); SIF_LUE: https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ECOCLIM/Downscaled-GOME2-SIF/v2.0/ (Duveiller et al. 2020); MODIS LAI: https://lpdaac.usgs.gov/products/mcd15a3hv061/ (Myneni et al. 2021). The SCOPE model (van der Tol et al. 2014) was accessed from https://github.com/‌Christiaanvandertol/SCOPE/ and processed with the ARTMO toolbox (Verrelst et al. 2016), available at https://artmotoolbox.‌com/radiative-transfer‌-‌models/88-rtm-leaf-canopy/17-scope.‌html. Landsat 8 accessed via the Google Earth Engine (GEE) platform, was used to perform land-use classification in Fig. 1.

References

  • Amir M, Chen J, Chen B, Wang S, Zhu K, Li Y, Meng Z, Ma L, Wang X, Liu Y, Wang P, Wang J, Huang M, Wang Z (2021) Reflectance and chlorophyll fluorescence-based retrieval of photosynthetic parameters improves the estimation of subtropical forest productivity. Ecol Indic 131:108133. https://doi.org/10.1016/j.ecolind.2021.108133

    Article  CAS  Google Scholar 

  • Badgley G, Field CB, Berry JA (2017) Canopy near-infrared reflectance and terrestrial photosynthesis. Sci Adv. https://doi.org/10.1126/sciadv.1602244

    Article  Google Scholar 

  • Badgley G, Anderegg LDL, Berry JA, Field CB (2019) Terrestrial gross primary production: using NIR V to scale from site to globe. Glob Chang Biol 25:3731–3740. https://doi.org/10.1111/gcb.14729

    Article  Google Scholar 

  • Baldocchi D, Chu H, Reichstein M (2018) Inter-annual variability of net and gross ecosystem carbon fluxes: a review. Agric for Meteorol 249:520–533. https://doi.org/10.1016/j.agrformet.2017.05.015

    Article  Google Scholar 

  • Burba G, Anderson D (2010) A brief practical guide to eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications. LI-COR Biosciences, Nebraska

    Google Scholar 

  • Chen J, Liu J, Cihlar J, Goulden M (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Modell 124:99–119. https://doi.org/10.1016/S0304-3800(99)00156-8

    Article  CAS  Google Scholar 

  • Chen A, Mao J, Ricciuto D, Lu D, Xiao J, Li X, Thornton PE, Knapp AK (2021) Seasonal changes in GPP/SIF ratios and their climatic determinants across the Northern Hemisphere. Glob Chang Biol 27:5186–5197. https://doi.org/10.1111/gcb.15775

    Article  CAS  Google Scholar 

  • Cheng Y-B, Middleton E, Zhang Q, Huemmrich K, Campbell P, Corp L, Cook B, Kustas W, Daughtry C (2013) Integrating solar induced fluorescence and the photochemical reflectance index for estimating gross primary production in a cornfield. Remote Sens 5:6857–6879. https://doi.org/10.3390/rs5126857

    Article  Google Scholar 

  • Chhabra A, Gohel A (2020) Elucidating space based observations of solar induced chlorophyll fluorescence over terrestrial vegetation of India. Trop Ecol 61:32–41. https://doi.org/10.1007/s42965-020-00074-w

    Article  CAS  Google Scholar 

  • Coppo P, Taiti A, Pettinato L, Francois M, Taccola M, Drusch M (2017) Fluorescence Imaging Spectrometer (FLORIS) for ESA FLEX Mission. Remote Sens 9:649. https://doi.org/10.3390/rs9070649

    Article  Google Scholar 

  • Cui Y, Xiao X, Zhang Y, Dong J, Qin Y, Doughty RB, Zhang G, Wang J, Wu X, Qin Y, Zhou S, Joiner J, Moore B (2017) Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Sci Rep 7:14963. https://doi.org/10.1038/s41598-017-13783-5

    Article  CAS  Google Scholar 

  • Dadhwal VK (2012) Assessment of Indian carbon cycle components using earth observation systems and ground inventory. Int Arch Photogramm Remote Sens Spat Inf Sci XXXIX-B8:249–254. https://doi.org/10.5194/isprsarchives-XXXIX-B8-249-2012. Accessed 10 July 2023

    Article  Google Scholar 

  • Damm A, Guanter L, Paul-Limoges E, van der Tol C, Hueni A, Buchmann N, Eugster W, Ammann C, Schaepman ME (2015) Far-red sun-induced chlorophyll fluorescence shows ecosystem-specific relationships to gross primary production: an assessment based on observational and modeling approaches. Remote Sens Environ 166:91–105. https://doi.org/10.1016/j.rse.2015.06.004

    Article  Google Scholar 

  • Deb Burman PK, Sarma D, Williams M, Karipot A, Chakraborty S (2017) Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables. J Earth Syst Sci 126:99. https://doi.org/10.1007/s12040-017-0874-3

    Article  CAS  Google Scholar 

  • Dechant B, Ryu Y, Badgley G, Zeng Y, Berry JA, Zhang Y, Goulas Y, Li Z, Zhang Q, Kang M, Li J, Moya I (2020) Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens Environ 241:111733. https://doi.org/10.1016/j.rse.2020.111733

    Article  Google Scholar 

  • Doughty R, Xiao X, Köhler P, Frankenberg C, Qin Y, Wu X, Ma S, Moore B (2021) Global-scale consistency of spaceborne vegetation indices, chlorophyll fluorescence, and photosynthesis. J Geophys Res Biogeosci. https://doi.org/10.1029/2020JG006136

    Article  Google Scholar 

  • Du S, Liu L, Liu X, Zhang X, Zhang X, Bi Y, Zhang L (2018) Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Sci Bull 63:1502–1512. https://doi.org/10.1016/j.scib.2018.10.003

    Article  Google Scholar 

  • Duveiller G, Filipponi F, Walther S, Köhler P, Frankenberg C, Guanter L, Cescatti A (2020) A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst Sci Data 12:1101–1116. https://doi.org/10.5194/essd-12-1101-2020

    Article  Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74666-9

    Book  Google Scholar 

  • Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS, Lee J-E, Toon GC, Butz A, Jung M, Kuze A, Yokota T (2011) New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys Res Lett. https://doi.org/10.1029/2011GL048738

    Article  Google Scholar 

  • Gao H, Liu S, Lu W, Smith AR, Valbuena R, Yan W, Wang Z, Xiao L, Peng X, Li Q, Feng Y, McDonald M, Pagella T, Liao J, Wu Z, Zhang G (2021) Global Analysis of the Relationship between Reconstructed Solar-Induced Chlorophyll Fluorescence (SIF) and Gross Primary Production (GPP). Remote Sens 13:2824. https://doi.org/10.3390/rs13142824

    Article  Google Scholar 

  • Gentine P, Alemohammad SH (2018) Reconstructed solar-induced fluorescence: a machine learning vegetation product based on MODIS surface reflectance to reproduce GOME-2 solar-induced fluorescence. Geophys Res Lett 45:3136–3146. https://doi.org/10.1002/2017GL076294

    Article  CAS  Google Scholar 

  • Guanter L, Bacour C, Schneider A, Aben I, van Kempen T, Maignan F, Retscher C, Köhler P, Frankenberg C, Joiner J, Zhang Y (2021) The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst Sci Data Discuss 202104:1–27. https://doi.org/10.5194/essd-2021-199

    Article  Google Scholar 

  • Hari M, Tyagi B (2022a) Terrestrial carbon cycle: tipping edge of climate change between the atmosphere and biosphere ecosystems. Environ Sci Atmos 2:867–890. https://doi.org/10.1039/D1EA00102G

    Article  Google Scholar 

  • Hari M, Tyagi B (2022b) India’s greening trend seems to slow down. What Does aerosol have to do with it? Land 11:538. https://doi.org/10.3390/land11040538

    Article  Google Scholar 

  • Hari M, Srinivasan S, Rajasekaran A, Tyagi B (2021a) Above ground carbon stock mapping over Coimbatore and Nilgiris Biosphere: a key source to the C sink. Carbon Manag 12:411–428. https://doi.org/10.1080/17583004.2021.1962979

    Article  CAS  Google Scholar 

  • Hari M, Tyagi B, Huddar MSK, Harish A (2021b) Satellite-based regional-scale evapotranspiration estimation mapping of the rice bowl of Tamil Nadu: a little water to spare. Irrig Drain 70:958–975. https://doi.org/10.1002/ird.2553

    Article  Google Scholar 

  • He L, Magney T, Dutta D, Yin Y, Köhler P, Grossmann K, Stutz J, Dold C, Hatfield J, Guan K, Peng B, Frankenberg C (2020) From the ground to space: using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophys Res Lett. https://doi.org/10.1029/2020GL087474

    Article  Google Scholar 

  • He W, Ju W, Jiang F, Parazoo N, Gentine P, Wu X, Zhang C, Zhu J, Viovy N, Jain AK, Sitch S, Friedlingstein P (2021) Peak growing season patterns and climate extremes-driven responses of gross primary production estimated by satellite and process based models over North America. Agric for Meteorol 298–299:108292. https://doi.org/10.1016/j.agrformet.2020.108292

    Article  Google Scholar 

  • Jindal P, Shukla MV, Sharma SK, Thapliyal PK (2016) Retrieval of ozone profiles from geostationary infrared sounder observations using principal component analysis. Q J R Meteorol Soc 142:3015–3025. https://doi.org/10.1002/qj.2884

    Article  Google Scholar 

  • Joiner J, Yoshida Y, Vasilkov AP, Yoshida Y, Corp LA, Middleton EM (2011) First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8:637–651. https://doi.org/10.5194/bg-8-637-2011

    Article  CAS  Google Scholar 

  • Joiner J, Guanter L, Lindstrot R, Voigt M, Vasilkov AP, Middleton EM, Huemmrich KF, Yoshida Y, Frankenberg C (2013) Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos Meas Tech 6:2803–2823. https://doi.org/10.5194/amt-6-2803-2013

    Article  Google Scholar 

  • Jones LA, Kimball JS, Reichle RH, Madani N, Glassy J, Ardizzone JV, Colliander A, Cleverly J, Desai AR, Eamus D, Euskirchen ES, Hutley L, Macfarlane C, Scott RL (2017) The SMAP level 4 carbon product for monitoring ecosystem land-atmosphere CO 2 exchange. IEEE Trans Geosci Remote Sens 55:6517–6532. https://doi.org/10.1109/TGRS.2017.2729343

    Article  Google Scholar 

  • Keenan TF, Migliavacca M, Papale D, Baldocchi D, Reichstein M, Torn M, Wutzler T (2019) Widespread inhibition of daytime ecosystem respiration. Nat Ecol Evol 3:407–415. https://doi.org/10.1038/s41559-019-0809-2

    Article  Google Scholar 

  • Kimball JS, Jones LA, Endsley KA, Kundig T, Reichle RH (2021) SMAP L4 Global Daily 9 km EASE-Grid Carbon Net Ecosystem Exchange, Version 6. NASA National Snow and Ice Data Center Distributed Active Archive Center , Boulder, Colorado USA

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2015) A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci Model Dev 8:3695–3713. https://doi.org/10.5194/gmd-8-3695-2015

    Article  Google Scholar 

  • Köhler P, Guanter L, Joiner J (2015) A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos Meas Technol 8:2589–2608. https://doi.org/10.5194/amt-8-2589-2015

    Article  Google Scholar 

  • Köhler P, Frankenberg C, Magney TS, Guanter L, Joiner J, Landgraf J (2018) Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys Res Lett 45:10456–10463. https://doi.org/10.1029/2018GL079031

    Article  CAS  Google Scholar 

  • Kuricheva OA, Avilov VK, Dinh DB, Sandlersky RB, Kuznetsov AN, Kurbatova JA (2021) Seasonality of energy and water fluxes in a tropical moist forest in Vietnam. Agric for Meteorol 298–299:108268. https://doi.org/10.1016/j.agrformet.2020.108268

    Article  Google Scholar 

  • Li X, Xiao J (2019) A Global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens 11:517. https://doi.org/10.3390/rs11050517

    Article  Google Scholar 

  • Li X, Xiao J (2022) TROPOMI observations allow for robust exploration of the relationship between solar-induced chlorophyll fluorescence and terrestrial gross primary production. Remote Sens Environ 268:112748. https://doi.org/10.1016/j.rse.2021.112748

    Article  Google Scholar 

  • Li X, Xiao J, Kimball JS, Reichle RH, Scott RL, Litvak ME, Bohrer G, Frankenberg C (2020a) Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought. Remote Sens Environ 251:112062. https://doi.org/10.1016/j.rse.2020.112062

    Article  Google Scholar 

  • Li Z, Zhang Q, Li J, Yang X, Wu Y, Zhang Z, Wang S, Wang H, Zhang Y (2020b) Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sens Environ 236:111420. https://doi.org/10.1016/j.rse.2019.111420

    Article  Google Scholar 

  • Li N, Shao J, Zhou G, Zhou L, Du Z, Zhou X (2022) Improving estimations of ecosystem respiration with asymmetric daytime and nighttime temperature sensitivity and relative humidity. Agric for Meteorol 312:108709. https://doi.org/10.1016/j.agrformet.2021.108709

    Article  Google Scholar 

  • Liu Y, Chen JM, He L, Zhang Z, Wang R, Rogers C, Fan W, de Oliveira G, Xie X (2022) Non-linearity between gross primary productivity and far-red solar-induced chlorophyll fluorescence emitted from canopies of major biomes. Remote Sens Environ. https://doi.org/10.1016/j.rse.2022.112896

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the Temperature Dependence of Soil Respiration. Funct Ecol. https://doi.org/10.2307/2389824

    Article  Google Scholar 

  • Mengistu AG, Mengistu Tsidu G, Koren G, Kooreman ML, Boersma KF, Tagesson T, Ardö J, Nouvellon Y, Peters W (2021) Sun-induced fluorescence and near-infrared reflectance of vegetation track the seasonal dynamics of gross primary production over Africa. Biogeosciences 18:2843–2857. https://doi.org/10.5194/bg-18-2843-2021

    Article  CAS  Google Scholar 

  • Mohammed GH, Colombo R, Middleton EM, Rascher U, van der Tol C, Nedbal L, Goulas Y, Pérez-Priego O, Damm A, Meroni M, Joiner J, Cogliati S, Verhoef W, Malenovský Z, Gastellu-Etchegorry J-P, Miller JR, Guanter L, Moreno J, Moya I, Berry JA, Frankenberg C, Zarco-Tejada PJ (2019) Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens Environ 231:111177. https://doi.org/10.1016/j.rse.2019.04.030

    Article  Google Scholar 

  • Monteith JL (1972) Solar Radiation and Productivity in Tropical Ecosystems. J Appl Ecol 9:747. https://doi.org/10.2307/2401901

    Article  Google Scholar 

  • Myneni R, Knyazikhin Y, Park T (2021) MODIS/Terra+Aqua Leaf Area Index/FPAR "Conclusions"-Day L4 Global 500 m SIN

  • Nayak RK, Patel NR, Dadhwal VK (2010) Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model. Environ Monit Assess 170:195–213. https://doi.org/10.1007/s10661-009-1226-9

    Article  Google Scholar 

  • Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y-W, Poindexter C, Chen J, Elbashandy A, Humphrey M, Isaac P, Polidori D, Reichstein M, Ribeca A, van Ingen C, Vuichard N, Zhang L, Amiro B, Ammann C, Arain MA, Ardö J, Arkebauer T, Arndt SK, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini LB, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black TA, Blanken PD, Bohrer G, Boike J, Bolstad PV, Bonal D, Bonnefond J-M, Bowling DR, Bracho R, Brodeur J, Brümmer C, Buchmann N, Burban B, Burns SP, Buysse P, Cale P, Cavagna M, Cellier P, Chen S, Chini I, Christensen TR, Cleverly J, Collalti A, Consalvo C, Cook BD, Cook D, Coursolle C, Cremonese E, Curtis PS, D’Andrea E, da Rocha H, Dai X, Davis KJ, De CB, de Grandcourt A, De LA, De Oliveira RC, Delpierre N, Desai AR, Di Bella CM, di Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrêne E, Dunn A, Dušek J, Eamus D, Eichelmann U, ElKhidir HAM, Eugster W, Ewenz CM, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein AH, Gough CM, Goulden ML, Graf A, Griebel A, Gruening C, Grünwald T, Hammerle A, Han S, Han X, Hansen BU, Hanson C, Hatakka J, He Y, Hehn M, Heinesch B, Hinko-Najera N, Hörtnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janouš D, Jans W, Jassal R, Jiang S, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch WL, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li Y, Liddell M, Limousin J-M, Lion M, Liska AJ, Lohila A, López-Ballesteros A, López-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Lüers J, Ma S, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis HA, Marras S, Massman W, Mastepanov M, Matamala R, Matthes JH, Mazzenga F, McCaughey H, McHugh I, McMillan AMS, Merbold L, Meyer W, Meyers T, Miller SD, Minerbi S, Moderow U, Monson RK, Montagnani L, Moore CE, Moors E, Moreaux V, Moureaux C, Munger JW, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen JE, Ourcival J-M, Papuga SA, Parmentier F-J, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips RP, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober SM, Rambal S, Rannik Ü, Raz-Yaseef N, Rebmann C, Reed D, de Dios VR, Restrepo-Coupe N, Reverter BR, Roland M, Sabbatini S, Sachs T, Saleska SR, Sánchez-Cañete EP, Sanchez-Mejia ZM, Schmid HP, Schmidt M, Schneider K, Schrader F, Schroder I, Scott RL, Sedlák P, Serrano-Ortíz P, Shao C, Shi P, Shironya I, Siebicke L, Šigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens RM, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang Y, Tapper N, Thom J, Tomassucci M, Tuovinen J-P, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker JP, Walter-Shea E, Wang H, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Li Y, Zampedri R, Zhang J, Zhou G, Zona D, Agarwal D, Biraud S, Torn M, Papale D (2020) The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci Data 7:225. https://doi.org/10.1038/s41597-020-0534-3

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Qiu R, Han G, Ma X, Sha Z, Shi T, Xu H, Zhang M (2020a) CO2 concentration, a critical factor influencing the relationship between solar-induced chlorophyll fluorescence and gross primary productivity. Remote Sens 12:1377. https://doi.org/10.3390/rs12091377

    Article  Google Scholar 

  • Qiu R, Han G, Ma X, Xu H, Shi T, Zhang M (2020b) A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF Data from Gross Primary Production (GPP) Estimation and Seasonal Cycles in North America. Remote Sens 12:258. https://doi.org/10.3390/rs12020258

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival J-M, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  • Reichstein M, Stoy PC, Desai AR, Lasslop G, Richardson AD (2012) Partitioning of net fluxes. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance. Springer atmospheric sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2351-1_9

    Chapter  Google Scholar 

  • Rodda SR, Thumaty KC, Praveen M, Jha CS, Dadhwal VK (2021) Multi-year eddy covariance measurements of net ecosystem exchange in tropical dry deciduous forest of India. Agric for Meteorol 301–302:108351. https://doi.org/10.1016/j.agrformet.2021.108351

    Article  Google Scholar 

  • Sabbatini S, Mammarella I, Arriga N, Fratini G, Graf A, Hörtnagl L, Ibrom A, Longdoz B, Mauder M, Merbold L, Metzger S, Montagnani L, Pitacco A, Rebmann C, Sedlák P, Šigut L, Vitale D, Papale D (2018) Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int Agrophys 32:495–515. https://doi.org/10.1515/intag-2017-0043

    Article  CAS  Google Scholar 

  • Sasidharan N (2004) Biodiversity documentation for Kerala. Part 6: flowering plants. Kerala Forest Research Institute

    Google Scholar 

  • Sinha SK, Padalia H, Senthil Kumar A (2017) Space-borne sun-induced fluorescence: an advanced probe to monitor seasonality of dry and moist tropical forest sites. Curr Sci 113:2180. https://doi.org/10.18520/cs/v113/i11/2180-2183

    Article  Google Scholar 

  • Sinha SK, Padalia H, Patel NR, Chauhan P (2021) Modelling sun-induced fluorescence for improved evaluation of forest carbon flux (GPP): Case study of tropical deciduous forest. India Ecol Modell 449:109552. https://doi.org/10.1016/j.ecolmodel.2021.109552

    Article  Google Scholar 

  • Song Y, Wang J, Wang L (2020) Satellite solar-induced chlorophyll fluorescence reveals heat stress impacts on wheat Yield in India. Remote Sens 12:3277. https://doi.org/10.3390/rs12203277

    Article  Google Scholar 

  • Umair M, Kim D, Ray RL, Choi M (2020) Evaluation of atmospheric and terrestrial effects in the carbon cycle for forest and grassland ecosystems using a remote sensing and modeling approach. Agric for Meteorol 295:108187. https://doi.org/10.1016/j.agrformet.2020.108187

    Article  Google Scholar 

  • UNESCO (2011) World Network of Biosphere Reserves 2010: sites for sustainable development. UNESCO, Paris

    Google Scholar 

  • van der Tol C, Berry JA, Campbell PKE, Rascher U (2014) Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J Geophys Res Biogeosciences 119:2312–2327. https://doi.org/10.1002/2014JG002713

    Article  Google Scholar 

  • Verrelst J, Rivera JP, van der Tol C, Magnani F, Mohammed G, Moreno J (2015) Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens Environ 166:8–21. https://doi.org/10.1016/j.rse.2015.06.002

    Article  Google Scholar 

  • Verrelst J, van der Tol C, Magnani F, Sabater N, Rivera JP, Mohammed G, Moreno J (2016) Evaluating the predictive power of sun-induced chlorophyll fluorescence to estimate net photosynthesis of vegetation canopies: A SCOPE modeling study. Remote Sens Environ 176:139–151. https://doi.org/10.1016/j.rse.2016.01.018

    Article  Google Scholar 

  • Walker AP, De Kauwe MG, Bastos A, Belmecheri S, Georgiou K, Keeling RF, McMahon SM, Medlyn BE, Moore DJP, Norby RJ, Zaehle S, Anderson-Teixeira KJ, Battipaglia G, Brienen RJW, Cabugao KG, Cailleret M, Campbell E, Canadell JG, Ciais P, Craig ME, Ellsworth DS, Farquhar GD, Fatichi S, Fisher JB, Frank DC, Graven H, Gu L, Haverd V, Heilman K, Heimann M, Hungate BA, Iversen CM, Joos F, Jiang M, Keenan TF, Knauer J, Körner C, Leshyk VO, Leuzinger S, Liu Y, MacBean N, Malhi Y, McVicar TR, Penuelas J, Pongratz J, Powell AS, Riutta T, Sabot MEB, Schleucher J, Sitch S, Smith WK, Sulman B, Taylor B, Terrer C, Torn MS, Treseder KK, Trugman AT, Trumbore SE, van Mantgem PJ, Voelker SL, Whelan ME, Zuidema PA (2021) Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO 2. New Phytol 229:2413–2445. https://doi.org/10.1111/nph.16866

    Article  CAS  Google Scholar 

  • Wang H, Xiao J (2021) Improving the capability of the SCOPE model for simulating solar-induced fluorescence and gross primary production using data from OCO-2 and flux towers. Remote Sens 13:794. https://doi.org/10.3390/rs13040794

    Article  Google Scholar 

  • Wang Z, He Y, Niu B, Wu J, Zhang X, Zu J, Huang K, Li M, Cao Y, Zhang Y, Chen N, Yang S, Wang X (2020) Sensitivity of terrestrial carbon cycle to changes in precipitation regimes. Ecol Indic 113:106223. https://doi.org/10.1016/j.ecolind.2020.106223

    Article  Google Scholar 

  • Watham T, Srinet R, Nandy S, Padalia H, Sinha SK, Patel NR, Chauhan P (2020) Environmental control on carbon exchange of natural and planted forests in Western Himalayan foothills of India. Biogeochemistry 151:291–311. https://doi.org/10.1007/s10533-020-00727-x

    Article  CAS  Google Scholar 

  • Watham T, Padalia H, Srinet R, Nandy S, Verma PA, Chauhan P (2021) Seasonal dynamics and impact factors of atmospheric CO2 concentration over subtropical forest canopies: observation from eddy covariance tower and OCO-2 satellite in Northwest Himalaya, India. Environ Monit Assess 193:106. https://doi.org/10.1007/s10661-021-08896-4

    Article  CAS  Google Scholar 

  • Wehr R, Munger JW, McManus JB, Nelson DD, Zahniser MS, Davidson EA, Wofsy SC, Saleska SR (2016) Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534:680–683. https://doi.org/10.1038/nature17966

    Article  CAS  Google Scholar 

  • Wu Q, Song C, Song J, Wang J, Chen S, Yang L, Xiang W, Zhao Z, Jiang J (2021) Effects of leaf age and canopy structure on gross ecosystem production in a subtropical evergreen Chinese fir forest. Agric for Meteorol. https://doi.org/10.1016/j.agrformet.2021.108618

    Article  Google Scholar 

  • Yan C, Wang B, Xiang J, Du J, Zhang S, Qiu GY (2020) Seasonal and interannual variability of surface energy fluxes and evapotranspiration over a subalpine horizontal flow wetland in China. Agric for Meteorol 288–289:107996. https://doi.org/10.1016/j.agrformet.2020.107996

    Article  Google Scholar 

  • Yu L, Wen J, Chang CY, Frankenberg C, Sun Y (2019) High-resolution global contiguous SIF of OCO-2. Geophys Res Lett 46:1449–1458. https://doi.org/10.1029/2018GL081109

    Article  Google Scholar 

  • Zhang Y, Joiner J, Alemohammad SH, Zhou S, Gentine P (2018) A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15:5779–5800. https://doi.org/10.5194/bg-15-5779-2018

    Article  CAS  Google Scholar 

  • Zhou H, Wu D, Lin Y (2020) The relationship between solar-induced fluorescence and gross primary productivity under different growth conditions: global analysis using satellite and biogeochemical model data. Int J Remote Sens 41:7660–7679. https://doi.org/10.1080/01431161.2020.1763507

    Article  Google Scholar 

  • Zuromski LM, Bowling DR, Köhler P, Frankenberg C, Goulden ML, Blanken PD, Lin JC (2018) Solar-Induced fluorescence detects interannual variation in gross primary production of coniferous forests in the Western United States. Geophys Res Lett 45:7184–7193. https://doi.org/10.1029/2018GL077906

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Indian Institute of Space science and Technology (IIST) for providing the eddy covariance dataset. Additionally, the authors would like to acknowledge the National Institute of Technology Rourkela for their research support for this work and the doctoral fellowship provided to MH. The authors would like to thank Dr. Yunfei Wu and three anonymous reviewers for their constructive feedback and suggestions in improving the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MH: conceptualization, writing—original draft preparation, review and editing, and visualization; GK: writing—review and editing, and supervision; BT: Conceptualization, writing—review and editing, and supervision. All the authors have read and approved the final manuscript

Corresponding author

Correspondence to Bhishma Tyagi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 871 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hari, M., Kutty, G. & Tyagi, B. Integrating multi-source datasets in exploring the covariation of gross primary productivity (GPP) and solar-induced chlorophyll fluorescence (SIF) at an Indian tropical forest flux site. Environ Earth Sci 83, 232 (2024). https://doi.org/10.1007/s12665-024-11528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-024-11528-y

Keywords

Navigation