Skip to main content

Advertisement

Log in

Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process

  • Research Article
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming (PHF) process directly determines the quality of the formed components. The microstructure stability of the pre-hardened sheets was investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS), while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests. The results indicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging (NA). The deviations of ultimate tensile strength (UTS), yield strength (YS), and sheet formability (Erichsen value) are all less than 2%. Also, after different NA time (from 48 h to 1 month) is applied to alloys before pre-hardening treatment, the pre-hardened alloys possess stable microstructure and mechanical properties as well. Interestingly, with the extension of NA time before pre-hardening treatment from 48 h to 1 month, the contribution of NA to the pre-hardening treatment is limited. Only a yield strength increment of 20 MPa is achieved, with no loss in elongation. The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston (GP) zones at the early stage of pre-hardening treatment, and the formation of θ″ phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G.R. Ebrahimi, A. Zarei-Hanzaki, M. Haghshenas, and H. Arabshahi, The effect of heat treatment on hot deformation behaviour of Al 2024, J. Mater. Process. Technol., 206(2008), No. 1–3, p. 25.

    Article  CAS  Google Scholar 

  2. R. Khatami, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, and M. Haghshenas, Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding, Int. J. Adv. Manuf. Technol., 93(2017), No. 1, p. 681.

    Article  Google Scholar 

  3. Y.Z. Chen, W. Liu, and S.J. Yuan, Strength and formability improvement of Al–Cu–Mn aluminum alloy complex parts by thermomechanical treatment with sheet hydroforming, JOM, 67(2015), No. 5, p. 938.

    Article  CAS  Google Scholar 

  4. A.A. El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, and D. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: A review, J. Adv. Res., 10(2018), p. 49.

    Article  Google Scholar 

  5. L. Hua, W.P. Zhang, H.J. Ma, and Z.L. Hu, Investigation of formability, microstructures and post-forming mechanical properties of heat-treatable aluminum alloys subjected to pre-aged hardening warm forming, Int. J. Mach. Tools Manuf., 169(2021), art. No. 103799.

  6. R. Braun, Investigations on the long-term stability of 6013-T6 sheet, Mater. Charact., 56(2006), No. 2, p. 85.

    Article  CAS  Google Scholar 

  7. P. Dong, D.Q. Sun, and H.M. Li, Natural aging behaviour of friction stir welded 6005A-T6 aluminium alloy, Mater. Sci. Eng. A, 576(2013), p. 29.

    Article  CAS  Google Scholar 

  8. L.P. Ding, Y. He, Z. Wen, P.Z. Zhao, Z.H. Jia, and Q. Liu, Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times, J. Alloys Compd., 647(2015), p. 238.

    Article  CAS  Google Scholar 

  9. Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy, Scripta Mater., 116(2016), p. 82.

    Article  CAS  Google Scholar 

  10. Y. Takaki, T. Masuda, E. Kobayashi, and T. Sato, Effects of natural aging on bake hardening behavior of Al–Mg–Si alloys with multi-step aging process, Mater. Trans., 55(2014), No. 8, p. 1257.

    Article  CAS  Google Scholar 

  11. L. Wan, Y.L. Deng, L.Y. Ye, and Y. Zhang, The natural ageing effect on pre-ageing kinetics of Al–Zn–Mg alloy, J. Alloys Compd., 776(2019), p. 469.

    Article  CAS  Google Scholar 

  12. G.J. Li, M.X. Guo, J.Q. Du, and L.Z. Zhuang, Synergistic improvement in bake-hardening response and natural aging stability of Al–Mg–Si–Cu–Zn alloys via non-isothermal pre-aging treatment, Mater. Des., 218(2022), art. No. 110714.

  13. J.A. Österreicher, G. Kirov, S.S.A. Gerstl, E. Mukeli, F. Grabner, and M. Kumar, Stabilization of 7xxx aluminium alloys, J. Alloys Compd., 740(2018), p. 167.

    Article  Google Scholar 

  14. J.A. Österreicher, D. Nebeling, F. Grabner, et al., Secondary ageing and formability of an Al–Cu–Mg alloy (2024) in W and under-aged tempers, Mater. Des., 226(2023), art. No. 111634.

  15. P.A. Rometsch, S.X. Gao, and M.J. Couper, Effect of composition and pre-ageing on the natural ageing and paint-baking behaviour of Al–Mg–Si Alloys, [in] H. Weiland, A.D. Rollett, and W.A. Cassada, eds., The 13th International Conference on Aluminum Alloys, Pittsburgh, PA, 2012, p. 15.

  16. W.B. Tu, J.G. Tang, L.H. Ma, S.L. Wang, and W.H. Chen, The combined effect of pre-aging and Sn addition on age hardening response and precipitation behavior of Al–1.0Mg–0.6Si (−0.3Cu) alloy, J. Mater. Res. Technol., 23(2023), p. 4606.

    Article  CAS  Google Scholar 

  17. S.Z. Zhu, D. Wang, B.L. Xiao, and Z.Y. Ma, Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al–Mg–Si composites, Composites Part B, 236(2022), art. No. 109851.

  18. P.P. Ma, C.H. Liu, Q.Y. Chen, Q. Wang, L.H. Zhan, and J.J. Li, Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy, J. Mater. Sci. Technol., 46(2020), p. 107.

    Article  CAS  Google Scholar 

  19. J.G. Zhao, Z.Y. Liu, S. Bai, D.P. Zeng, L. Luo, and J. Wang, Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and re-aged Al–Zn–Mg–Cu alloy, J. Alloys Compd., 829(2020), art. No. 154469.

  20. C.H. Liu, Z.Y. Ma, P.P. Ma, L.H. Zhan, and M.H. Huang, Multiple precipitation reactions and formation of θ′-phase in a pre-deformed Al–Cu alloy, Mater. Sci. Eng., 733(2018), p. 28.

    Article  CAS  Google Scholar 

  21. K.C. Yu, L.G. Hou, M.X. Guo, et al., A method for determining R-value of aluminum sheets with the Portevin-Le Chatelier effect, Mater. Sci. Eng. A, 814(2021), art. No. 141246.

  22. S. Gupta, A.J. Beaudoin, and J. Chevy, Strain rate jump induced negative strain rate sensitivity (NSRS) in aluminum alloy 2024: Experiments and constitutive modeling, Mater. Sci. Eng. A, 683(2017), p. 143.

    Article  CAS  Google Scholar 

  23. S.K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures, Mater. Lett., 59(2005), No. 6, p. 629.

    Article  CAS  Google Scholar 

  24. J.M. Papazian, A calorimetric study of precipitation in aluminum alloy 2219, Metall. Trans. A, 12(1981), No. 2, p. 269.

    Article  CAS  Google Scholar 

  25. T. Sato, S. Hirosawa, K. Hirose, and T. Maeguchi, Roles of microalloying elements on the cluster formation in the initial stage of phase decomposition of Al-based alloys, Metall. Mater. Trans. A, 34(2003), No. 12, p. 2745.

    Article  Google Scholar 

  26. G.A. Li, Z. Ma, J.T. Jiang, W.Z. Shao, W. Liu, and L. Zhen, Effect of pre-stretch on the precipitation behavior and the mechanical properties of 2219 Al alloy, Materials, 14(2021), No. 9, art. No. 2101.

  27. W.P. Zhang, H.H. Li, Z.L. Hu, and L. Hua, Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-T6 alloy under pre-hardened hot forming process, Mater. Sci. Eng. A, 792(2020), art. No. 139749.

  28. Y.C. Lin, J.L. Zhang, G. Liu, and Y.J. Liang, Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy, Mater. Des., 83(2015), p. 866.

    Article  CAS  Google Scholar 

  29. H.M. Wang, Y.P. Yi, and S.Q. Huang, Influence of pre-deformation and subsequent ageing on the hardening behavior and microstructure of 2219 aluminum alloy forgings, J. Alloys Compd., 685(2016), p. 941.

    Article  CAS  Google Scholar 

  30. E.M. Elgallad, Z. Zhang, and X.G. Chen, Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy, Mater. Sci. Eng. A, 625(2015), p. 213.

    Article  CAS  Google Scholar 

  31. R. Santos-Güemes, L. Capolungo, J. Segurado, and J. LLorca, Dislocation dynamics prediction of the strength of Al–Cu alloys containing shearable θ″ precipitates, J. Mech. Phys. Solids, 151(2021), art. No. 104375.

  32. J.Y. Li, S.L. Lü, S.S. Wu, D.J. Zhao, and W. Guo, Micro-mechanism of simultaneous improvement of strength and ductility of squeeze-cast Al–Cu alloy, Mater. Sci. Eng. A, 833(2022), art. No. 142538.

  33. A. Deschamps and F. De Geuser, On the validity of simple precipitate size measurements by small-angle scattering in metallic systems, J. Appl. Crystallogr., 44(2011), p. 343.

    Article  CAS  Google Scholar 

  34. A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman, Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation, Acta Mater., 59(2011), No. 15, p. 6187.

    Article  CAS  Google Scholar 

  35. Z.G. Chen, J.L. He, Y.Y. Zheng, and C.H. Lu, Mechanical performance improvement of Al–Cu–Mg using various thermomechanical treatments, Mater. Sci. Eng. A, 841(2022), art. No. 142869.

  36. V.L. Tellkamp, E.J. Lavernia, and A. Melmed, Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy, Metall. Mater. Trans. A, 32(2001), No. 9, p. 2335.

    Article  Google Scholar 

  37. T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V.S. Sarma, Microstructure and mechanical properties of nanostructured Al–4Cu alloy produced by mechanical alloying and vacuum hot pressing, Metall. Mater. Trans. A, 40(2009), No. 12, p. 2798.

    Article  Google Scholar 

  38. D.H. Liu, D.J. Wu, G. Ma, et al., Effect of post-deposition heat treatment on laser-TIG hybrid additive manufactured Al–Cu alloy, Virtual Phys. Prototyp., 15(2020), p. 445.

    Article  Google Scholar 

  39. J. Lan, X.J. Shen, J. Liu, and L. Hua, Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging, Mater. Sci. Eng. A, 745(2019), p. 517.

    Article  CAS  Google Scholar 

  40. S. Spriano, R. Doglione, and M. Baricco, Texture, hardening and mechanical anisotropy in A.A. 8090-T851 plate, Mater. Sci. Eng. A, 257(1998), No. 1, p. 134.

    Article  Google Scholar 

  41. M.J. Starink, P. Wang, I. Sinclair, and P.J. Gregson, Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength, Acta Mater., 47(1999), No. 14, p. 3855.

    Article  CAS  Google Scholar 

  42. B.X. Xie, L. Huang, Z.Y. Wang, X.X. Li, and J.J. Li, Microstructural evolution and mechanical properties of 2219 aluminum alloy from different aging treatments to subsequent electromagnetic forming, Mater. Charact., 181(2021), art. No. 111470.

  43. K.K. Ma, H.M. Wen, T. Hu, et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62(2014), p. 141.

    Article  CAS  Google Scholar 

  44. H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering, Acta Mater., 61(2013), No. 8, p. 2769.

    Article  CAS  Google Scholar 

  45. Z.Y. Ma, L.H. Zhan, C.H. Liu, et al., Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al–Cu alloy: Experiments and modeling, Int. J. Plast., 110(2018), p. 183.

    Article  CAS  Google Scholar 

  46. Z.J. Shen, Q.Q. Ding, C.H. Liu, et al., Atomic-scale mechanism of the θ″ → θ′ phase transformation in Al–Cu alloys, J. Mater. Sci. Technol., 33(2017), No. 10, p. 1159.

    Article  CAS  Google Scholar 

  47. J.S. Yang, C.H. Liu, P.P. Ma, L.H. Chen, L.H. Zhan, and N. Yan, Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al–Cu alloy, Int. J. Plast., 158(2022), art. No. 103413.

  48. Z.Q. Li, W.R. Ren, H.W. Chen, and J.F. Nie, θ‴ precipitate phase, GP zone clusters and their origin in Al–Cu alloys, J. Alloys Compd., 930(2023), art. No. 167396.

  49. Y. Chen, A.Q. Wang, J.P. Xie, and Y.C. Guo, Deformation mechanisms in Al/Al2Cu/Cu multilayer under compressive loading, J. Alloys Compd., 885(2021), art. No. 160921.

  50. H. Liu, I. Papadimitriou, F.X. Lin, and J. LLorca, Precipitation during high temperature aging of Al–Cu alloys: A multiscale analysis based on first principles calculations, Acta Mater., 167(2019), p. 121.

    Article  CAS  Google Scholar 

  51. H. Miyoshi, H. Kimizuka, A. Ishii, and S. Ogata, Competing nucleation of single- and double-layer Guinier-Preston zones in Al–Cu alloys, Sci. Rep., 11(2021), No. 1, art. No. 4503.

  52. D. Sadeghi-Nezhad, S.H.M. Anijdan, H. Lee, et al., The effect of cold rolling, double aging and overaging processes on the tensile property and precipitation of AA2024 alloy, J. Mater. Res. Technol., 9(2020), No. 6, p. 15475.

    Article  CAS  Google Scholar 

  53. S. Fu, H.Q. Liu, N. Qi, et al., On the electrostatic potential assisted nucleation and growth of precipitates in Al–Cu alloy, Scripta Mater., 150(2018), p. 13.

    Article  CAS  Google Scholar 

  54. A. Somoza, M.P. Petkov, K.G. Lynn, and A. Dupasquier, Stability of vacancies during solute clustering in Al–Cu-based alloys, Phys. Rev. B, 65(2002), No. 9, art. No. 094107.

  55. M. Murayama and K. Hono, Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys, Acta Mater., 47(1999), No. 5, p. 1537.

    Article  CAS  Google Scholar 

  56. R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer, Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing, Acta Mater., 58(2010), No. 15, p. 4923.

    Article  CAS  Google Scholar 

  57. H. Miyoshi, H. Kimizuka, A. Ishii, and S. Ogata, Temperature-dependent nucleation kinetics of Guinier-Preston zones in Al–Cu alloys: An atomistic kinetic Monte Carlo and classical nucleation theory approach, Acta Mater., 179(2019), p. 262.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52075400 and 52275368), the 111 Project (No. B17034), the Key Research and Development Program of Hubei Province, China (Nos. 2021BAA200 and 2022AAA001), and the Independent Innovation Projects of the Hubei Longzhong Laboratory (No. 2022ZZ-04)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhili Hu or Qiu Pang.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Wei, P., Hu, Z. et al. Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process. Int J Miner Metall Mater 31, 539–551 (2024). https://doi.org/10.1007/s12613-023-2758-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-023-2758-7

Keywords

Navigation