Skip to main content
Log in

Design and Verification of Parallel Hip Exoskeleton Considering Output Torque Anisotropy

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

In rehabilitation training, it is crucial to consider the compatibility between exoskeletons and human legs in motion. However, most exoskeletons today adopt an anthropomorphic serial structure, which results in rotational centers that are not precisely aligned with the center of the hip joint. To address this issue, we introduce a novel exoskeleton called the Parallel Hip Exoskeleton (PH-Exo) in this paper. PH-Exo is meticulously designed based on the anisotropic law of output torque. Considering the friction of the drive components, a dynamic model of the human–machine complex is established. Simulation analysis demonstrates that PH-Exo not only exhibits outstanding torque performance but also achieves high controllability in both flexion/extension and adduction/abduction directions. Additionally, a robust controller is designed to address model uncertainty, friction, and external interference. Wearing experiments indicate that under the control of the robust controller, each motor achieves excellent tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chen, B., Zi, B., Qin, L., & Pan, Q. S. (2020). State-of-the-art research in robotic hip exoskeletons: A general review. Journal of Orthopaedic Translation, 20, 4–13.

    Article  Google Scholar 

  2. Näf, M. B., Junius, K., Rossini, M., Rodriguez-Guerrero, C., Vanderborght, B., & Lefeber, D. (2018). Misalignment compensation for full human-exoskeleton kinematic compatibility: State of the art and evaluation. Applied Mechanics Reviews, 70(5), 050802.

    Article  Google Scholar 

  3. Sarkisian, S. V., Ishmael, M. K., & Lenzi, T. (2021). Self-aligning mechanism improves comfort and performance with a powered knee exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 629–640.

    Article  Google Scholar 

  4. Wang, X. Y., Guo, S., Qu, B. Y., Song, M. J., Wang, P. Y., & Liu, D. X. (2022). Design and experimental verification of a parallel hip exoskeleton system for full-gait-cycle rehabilitation. Journal of Mechanisms and Robotics, 14(5), 054504.

    Article  Google Scholar 

  5. Amigo, L.E., Casals, A., & Amat, J. (2011). Design of a 3-DoF joint system with dynamic servo-adaptation in orthotic applications. In 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3700-3705.

  6. Cempini, M., De Rossi, S. M. M., Lenzi, T., Vitiello, N., & Carrozza, M. C. (2013). Self-alignment mechanisms for assistive wearable robots: A kinetostatic compatibility method. IEEE Transactions on Robotics, 29(1), 236–250.

    Article  Google Scholar 

  7. Lee, Y., Kim, Y.-J., Lee, J., Lee, M., Choi, B., Kim, J., Park, Y. J., & Choi, J. (2017). Biomechanical design of a novel flexible exoskeleton for lower extremities. IEEE/ASME Transactions on Mechatronics, 22(5), 2058–2069.

    Article  Google Scholar 

  8. Schorsch, J. F., Keemink, A. Q. L., Stienen, A. H. A., der Van, Helm F. C. T., & Abbink, D. A. (2014). A novel self-aligning mechanism to decouple force and torques for a planar exoskeleton joint. Mechanical Sciences, 5(2), 29–35.

    Article  Google Scholar 

  9. Li, J. F., Zuo, S. P., Xu, C. H., Zhang, L. Y., Dong, M. J., Tao, C. J., & Ji, R. (2020). Inuence of a compatible design on physical human-robot interaction force: A case study of a self-adapting lower-limb exoskeleton mechanism. Journal of Intelligent and Robotic Systems, 98, 525–538.

    Article  Google Scholar 

  10. Junius, K., Lefeber, N., Swinnen, E., Vanderborght, B., & Lefeber, D. (2017). Metabolic effects induced by a kinematically compatible hip exoskeleton during STS. IEEE Transactions on Biomedical Engineering, 65(6), 1399–1409.

    Article  Google Scholar 

  11. Näf, M. B., Koopman, A. S., Baltrusch, S., Rodriguez-Guerrero, C., Vanderborght, B., & Lefeber, D. (2018). Passive back support exoskeleton improves range of motion using exible beams. Frontiers in Robotics and AI, 5, 72.

    Article  Google Scholar 

  12. Koopman, A. S., Näf, M., Baltrusch, S. J., Kingma, I., Rodriguez-Guerrero, C., Babič, J., Looze, M. P., & van Dieën, J. H. (2020). Biomechanical evaluation of a new passive back support exoskeleton. Journal of Biomechanics, 105, 109795.

    Article  Google Scholar 

  13. Liu, J. S., He, Y., Yang, J. T., Cao, W. J., & Wu, X. Y. (2022). Design and analysis of a novel 12-Dof self-balancing lower extremity exoskeleton for walking assistance. Mechanism and Machine Theory, 167, 104519.

    Article  Google Scholar 

  14. Li, J. F., Li, S. C., Zhang, L. Y., Tao, C. J., & Ji, R. (2018). Position solution and kinematic interference analysis of a novel parallel hip-assistive mechanism. Mechanism and Machine Theory, 120, 265–287.

    Article  Google Scholar 

  15. Li, J. F., Zhang, L. Y., Dong, M. J., Zuo, S. P., He, Y. D., & Zhang, P. F. (2020). Velocity and force transfer performance analysis of a parallel hip assistive mechanism. Robotica, 38(4), 747–759.

    Article  Google Scholar 

  16. Gao, G. Q., Wen, J., Liu, X. J., & Zhang, Z. G. (2013). Synchronous smooth sliding mode control for parallel mechanism based on coupling analysis. International Journal of Advanced Robotic Systems, 10(3), 173.

    Article  Google Scholar 

  17. Mazare, M., Taghizadeh, M., & Rasool Najafi, M. (2017). Kinematic analysis and design of a 3-DOF translational parallel robot. International Journal of Automation and Computing, 14, 432–441.

    Article  Google Scholar 

  18. Zhang, J. J., Xie, F. G., Ma, Z. J., Liu, X. J., & Zhao, H. C. (2023). Design of parallel multiple tuned mass dampers for the vibration suppression of a parallel machining robot. Mechanical Systems and Signal Processing, 200, 110506.

    Article  Google Scholar 

  19. Mazare, M., Taghizadeh, M., & Najafi, M. R. (2019). Inverse dynamics of a 3-P [2 (US)] translational parallel robot. Robotica, 37(4), 708–728.

    Article  Google Scholar 

  20. Wang, X. Y., Guo, S., Qu, B. J., & Bai, S. P. (2022). Design and experimental verification of a hip exoskeleton based on human-machine dynamics for walking assistance. IEEE Transactions on Human-Machine Systems, 53(1), 85–97.

    Article  Google Scholar 

  21. Simoneau, G. G. (2010). Kinesiology of walking. In D. A. Neumann (Ed.), Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation (2nd ed., pp. 627–671). Elsevier, St. Louis, Missouri, USA: Mosby.

    Google Scholar 

  22. Gotlih, K., Kovac, D., Vuherer, T., Brezovnik, S., Brezocnik, M., & Zver, A. (2011). Velocity anisotropy of an industrial robot. Robotics and Computer-Integrated Manufacturing, 27(1), 205–211.

    Article  Google Scholar 

  23. Zhao, Y. J. (2013). Dynamic optimum design of a three translational degrees of freedom parallel robot while considering anisotropic property. Robotics and Computer-Integrated Manufacturing, 29(4), 100–112.

    Article  Google Scholar 

  24. Zhao, Y. J. (2013). Dimensional synthesis of a three translational degrees of freedom parallel robot while considering kinematic anisotropic property. Robotics and Computer-Integrated Manufacturing, 29(1), 169–179.

    Article  Google Scholar 

  25. Li, S. H., Niu, Y. Z., Xu, J. L., & Yu, H. B. (2024). A novel integrated design method of parallel mechanisms based on performance requirements. Journal of Mechanisms and Robotics, 16(4), 044502.

    Article  Google Scholar 

  26. Cao, Y. C., Zhao, Y. Z., Zhang, T., & Ma, G. C. (2020). Construction method of parallel mechanisms with a partially constant Jacobian matrix. Mechanism and Machine Theory, 145, 103699.

    Article  Google Scholar 

  27. Joshi, S. A., & Tsai, L. W. (2002). Jacobian analysis of limited-DOF parallel manipulators. Journal of Mechanical Design, 124(2), 254–258.

    Article  Google Scholar 

  28. Kane, T. R., & Levinson, D. A. (1983). The use of Kane’s dynamical equations in robotics. The International Journal of Robotics Research, 2(3), 3–21.

    Article  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Hebei Province (Grant no. F2022203043) and the Provincial Key Laboratory Performance Subsidy Project (Grant no. 22567612 H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucai Liu.

Ethics declarations

Conflict of Interest

The authors declare that there is no Conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

\({{{{\varvec{G}}}}_{M0}} = {\left[ {\begin{array}{*{20}{c}} 1&{}0&{}0&{}{ - 2{{\textrm{s}}_{21}}}&{}1&{}0\\ 0&{}{{{\textrm{s}}_{11}}}&{}{ - 2}&{}0&{}0&{}{{{\textrm{s}}_{31}}}\\ 0&{}{{{\textrm{c}}_{11}}}&{}0&{}{ - 2{{\textrm{c}}_{21}}}&{}0&{}{{{\textrm{c}}_{31}}}\\ {{u_1}}&{}{{v_1}}&{}0&{}0&{}0&{}0\\ 0&{}0&{}{{u_2}}&{}{{v_2}}&{}0&{}0\\ 0&{}0&{}0&{}0&{}{{u_3}}&{}{{v_3}} \end{array}} \right] ^{ - 1}}\), \({{{{\varvec{G}}}}_{M1}} = \left[ {\begin{array}{*{20}{c}} 0&{}{2{L_{2{\textrm{c}}}}{{\textrm{c}}_{21}}}&{}0\\ { - {L_{1{\textrm{c}}}}{{\textrm{c}}_{11}}}&{}0&{}{ - {L_{3{\textrm{c}}}}{{\textrm{c}}_{31}}}\\ {{L_{1{\textrm{c}}}}{{\textrm{s}}_{11}}}&{}{ - 2{L_{2{\textrm{c}}}}{{\textrm{s}}_{21}}}&{}{{L_{3{\textrm{c}}}}{{\textrm{s}}_{31}}}\\ { - {L_{1{\textrm{c}}}}{p_{11}}}&{}0&{}0\\ 0&{}{{L_{2{\textrm{c}}}}{p_{21}}}&{}0\\ 0&{}0&{}{ - {L_{3{\textrm{c}}}}{p_{31}}} \end{array}} \right]\).

In \({{{{\varvec{G}}}}_{M0}}\) and \({{{{\varvec{G}}}}_{M1}}\), \({u_1} = {l_{{\mathrm{12\,s}}}} - {x_o} + a\); \({u_2} = {l_{{\mathrm{22\,s}}}} + {y_o} - b\); \({u_3} = {l_{{\mathrm{32\,s}}}} - {x_o} - a\); \({p_{k1}} = {y_o}{{\textrm{c}}_{k1}} + {z_o}{{\textrm{s}}_{k1}}\); \({p_{21}} = {x_o}{{\textrm{c}}_{21}} - {z_o}{{\textrm{s}}_{21}}\); \({v_i} = {L_{i{\textrm{c}}}} - {({-1})^i}{p_i}\). In \({v_i}\), \({p_k} = {y_o}{{\textrm{s}}_{k1}} - {z_o}{{\textrm{c}}_{k1}}\); \({p_2} = {x_o}{{\textrm{s}}_{21}} + {z_o}{{\textrm{c}}_{21}}\).

Appendix B

\({{{\varvec{G}}}}_q^{i1} = \left[ {\begin{array}{*{20}{c}} {{{{{\varvec{s}}}}_{i1}}}\\ {{{{{\varvec{m}}}}_{i11}}} \end{array}} \right] {{{\varvec{g}}}}_\theta ^i\), \({{{\varvec{G}}}}_q^{i2} = \left[ {\begin{array}{*{20}{c}} {{{{{\varvec{s}}}}_{i1}}}&{}{{{{{\varvec{s}}}}_{i2}}}\\ {{{{{\varvec{m}}}}_{i21}}}&{}{{{{{\varvec{m}}}}_{i22}}} \end{array}} \right] \left[ {\begin{array}{*{20}{c}} {{{{\varvec{g}}}}_\theta ^i}\\ {{{{{\varvec{G}}}}_{Bi}}\left( {{\textrm{2}},:} \right) } \end{array}} \right]\), \({{{\varvec{G}}}}_q^{i3} = \left[ {\begin{array}{*{20}{c}} {{{{{\varvec{s}}}}_{i1}}}&{}{{{{{\varvec{s}}}}_{i2}}}&{}{{{\varvec{0}}}}\\ {{{{{\varvec{m}}}}_{i31}}}&{}{{{{{\varvec{m}}}}_{i32}}}&{}{{{{{\varvec{s}}}}_{i3}}} \end{array}} \right] {\left[ {\begin{array}{*{20}{c}} {{{{\varvec{g}}}}{{_\theta ^i}^{\textrm{T}}}}&{{{{\varvec{G}}}}_{Bi}^{\textrm{T}}\left( {{\textrm{2}},:} \right) }&{{{{\varvec{G}}}}_{Bi}^{\textrm{T}}\left( {{\textrm{1}},:} \right) } \end{array}} \right] ^{\textrm{T}}}\).

In \({{{\varvec{G}}}}_q^{ic}\), \({{{\varvec{g}}}}_\theta ^1 = \left[ {\begin{array}{*{20}{c}} 1&0&0 \end{array}} \right]\); \({{{\varvec{g}}}}_\theta ^2 = \left[ {\begin{array}{*{20}{c}} 0&1&0 \end{array}} \right]\); \({{{\varvec{g}}}}_\theta ^3 = \left[ {\begin{array}{*{20}{c}} 0&0&1 \end{array}} \right]\); \({{{{\varvec{s}}}}_{i2}} = {{{\varvec{R}}}_{i1}}{{{\varvec{y}}}}\); \({{{{\varvec{s}}}}_{i3}} = {{{\varvec{R}}}_{i2}}{{{\varvec{z}}}}\); \({{{{\varvec{m}}}}_{icj}} = {{{{\varvec{s}}}}_{ij}} \times \left( {{{{{\varvec{P}}}}_{ic}} - {}^A{{{\varvec{r}}}_{A,ij}}} \right)\); \({}^A{{{\varvec{r}}}_{A,i2}} = {}^A{{{\varvec{r}}}_{A,i1}} + {}^A{{{\varvec{r}}}_{i1,i2}}\).

Appendix C

\({{{\varvec{J}}}}{\mathrm{= }}{{{{\varvec{J}}}}_\omega }{{{{\varvec{J}}}}_\chi }\). In \({{\varvec{J}}}\), \({{{{\varvec{J}}}}_\omega }{\mathrm{= }}\left[ {\begin{array}{*{20}{c}} {{\textrm{c}}\beta {\textrm{c}}\gamma }&{}{ - {\textrm{s}}\gamma }&{}0\\ {{\textrm{c}}\beta {\textrm{s}}\gamma }&{}{{\textrm{c}}\gamma }&{}0\\ { - {\textrm{s}}\beta }&{}0&{}1 \end{array}} \right]\); \({{{{\varvec{J}}}}_\chi }{\mathrm{= }}{{{{\varvec{J}}}}_0}\left( {{{{{\varvec{J}}}}_1} + {{{{\varvec{J}}}}_2}{{{{\varvec{G}}}}_{MC}}} \right)\).

In \({{{{\varvec{J}}}}_\chi }\), \({{{{{\varvec{J}}}}_0}} = {\left[ {\begin{array}{*{20}{c}} 0&{}{r{\textrm{c}}\beta }&{}0\\ 0&{}{ - r{\textrm{s}}\beta {\textrm{s}}\gamma }&{}{r{\textrm{c}}\beta {\textrm{c}}\gamma }\\ {\left( {{b_1}{\textrm{c}}\alpha - {c_1}{\textrm{s}}\alpha } \right) {\textrm{c}}\beta }&{}{{x_o}{\textrm{c}}\beta - {b_1}{\textrm{s}}\alpha {\textrm{s}}\beta - {c_1}{\textrm{c}}\alpha {\textrm{s}}\beta }&{}0 \end{array}} \right] ^{ - 1}}\); \({{{{\varvec{J}}}}_1} = \left[ {\begin{array}{*{20}{c}} {{L_{1{\textrm{c}}}}{{\textrm{s}}_{11}}}&{}0&{}{ - {L_{3{\textrm{c}}}}{{\textrm{s}}_{31}}}\\ { - {L_{1{\textrm{c}}}}{{\textrm{c}}_{11}}}&{}0&{}{{L_{3{\textrm{c}}}}{{\textrm{c}}_{31}}}\\ 0&{}{ - {L_{2{\textrm{c}}}}{{\textrm{s}}_{21}}}&{}0 \end{array}} \right]\); \({{{{\varvec{J}}}}_2}{\mathrm{= }}\left[ {\begin{array}{*{20}{c}} { - {{\textrm{c}}_{11}}}&{}0&{}{{{\textrm{c}}_{31}}}\\ { - {{\textrm{s}}_{11}}}&{}0&{}{{{\textrm{s}}_{31}}}\\ 0&{}{{{\textrm{c}}_{21}}}&{}0 \end{array}} \right]\); \({{{{\varvec{G}}}}_{MC}} = \left[ {\begin{array}{*{20}{c}} {{{{{\varvec{G}}}}_M}\left( {2,:} \right) }\\ {{{{{\varvec{G}}}}_M}\left( {4,:} \right) }\\ {{{{{\varvec{G}}}}_M}\left( {6,:} \right) } \end{array}} \right]\).

Appendix D

\({{{{\varvec{E}}}}_0} = {\left[ {\begin{array}{*{20}{c}} 0&{}{n_1^ * }&{}{{n_1}}&{}{{e_1}}&{}{e_{21}^ * }&{}{e_{31}^ * }\\ { - 2n_2^ * }&{}0&{}{ - 2{n_2}}&{}{e_{12}^ * }&{}{{e_2}}&{}{e_{32}^ * }\\ 0&{}{n_3^ * }&{}{{n_3}}&{}{e_{13}^ * }&{}{e_{23}^ * }&{}{{e_3}} \end{array}} \right] ^{\textrm{T}}}\). In \({{{{\varvec{E}}}}_0}\), \({n_i} = {L_{i{\textrm{c}}}}{{\textrm{c}}_{i1}}{\dot{{\theta }}_{i1}} + 2{{\textrm{s}}_{i1}}{\dot{L}_{i{\textrm{c}}}}\); \(n_i^ * = {L_{i{\textrm{c}}}}{{\textrm{s}}_{i1}}{\dot{{\theta }}_{i1}} - 2{{\textrm{c}}_{i1}}{\dot{L}_{i{\textrm{c}}}}\); \({e_i} = {\left( { - 1} \right) ^{i + 1}}\left( {{L_{i{\textrm{c}}}}{p_i}{{\dot{{\theta }}}_{i1}} - 2{{\dot{L}}_{i{\textrm{c}}}}{p_{i1}}} \right) - {\dot{l}_{{\textrm{i2s}}}}G_M^{2i - 1,i} - {\dot{L}_{i{\textrm{c}}}}G_M^{2i,i}\); \(e_{ij}^ * = - {\dot{L}_{i{\textrm{c}}}}G_M^{2i,j} - {\dot{l}_{i{\mathrm{2\,s}}}}G_M^{2i - 1,j}\); \(G_M^{i,j}\) is the element in the \(\textit{i}\)-th row and \(\textit{j}\)-th column in matrix \({{{{\varvec{G}}}}_M}\).

Appendix E

\({{{\varvec{E}}}}_q^{i1} = {\dot{{\theta }}_{i1}}\left[ {\begin{array}{*{20}{c}} {{{\varvec{0}}}}\\ {{{{{\varvec{s}}}}_{i1}} \times {{{{\varvec{m}}}}_{i11}}} \end{array}} \right] {{{\varvec{g}}}}_\theta ^i\), \({{{\varvec{E}}}}_q^{i2} = {{{\varvec{G}}}}_\theta ^{i2}\left[ {\begin{array}{*{20}{c}} {{{\varvec{0}}}}\\ {{{{{\varvec{E}}}}_{Bi}}\left( {2,:} \right) } \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\dot{{\theta }}}_{i1}}\left( {{{{{\varvec{s}}}}_{i1}} \times {{{{\varvec{s}}}}_{i2}}} \right) {{{{\varvec{G}}}}_{Bi}}\left( {{\textrm{2}},:} \right) }\\ {{{\dot{{\theta }}}_{i1}}\left( {{{{{\varvec{s}}}}_{i1}} \times {{{{\varvec{m}}}}_{i21}}} \right) {{{\varvec{g}}}}_\theta ^i + {{{\varvec{E}}}}_1^ * } \end{array}} \right]\), \({{{\varvec{E}}}}_q^{i3} = {{{\varvec{G}}}}_\theta ^{i3}\left[ {\begin{array}{*{20}{c}} {{{\varvec{0}}}}\\ {{{{{\varvec{E}}}}_{Bi}}\left( {2,:} \right) }\\ {{{{{\varvec{E}}}}_{Bi}}\left( {1,:} \right) } \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\dot{\theta }}_{i1}}\left( {{{{{\varvec{s}}}}_{i1}} \times {{{{\varvec{s}}}}_{i2}}} \right) {{{{\varvec{G}}}}_{Bi}}\left( {{\textrm{2}},:} \right) }\\ {{{\dot{\theta }}_{i1}}\left( {{{{{\varvec{s}}}}_{i1}} \times {{{{\varvec{m}}}}_{i31}}} \right) {{{\varvec{g}}}}_\theta ^i + {{{\varvec{E}}}}_2^ * + {{{\varvec{E}}}}_3^ * } \end{array}} \right]\).

In \({{{\varvec{E}}}}_q^{i2}\) and \({{{\varvec{E}}}}_q^{i3}\), \({{{\varvec{E}}}}_1^ * = \left[ {2{{\dot{\theta }}_{i1}}\left( {{{{{\varvec{s}}}}_{i1}} \times {{{{\varvec{m}}}}_{i22}}} \right) + \left( {{{{{\varvec{s}}}}_{i2}} \times {{{{\varvec{m}}}}_{i22}}} \right) {{{\dot{\varvec{\theta }}}}^{\textrm{T}}}{{{\varvec{G}}}}_{Bi}^{\textrm{T}}\left( {{\textrm{2}},:} \right) } \right] {{{{\varvec{G}}}}_{Bi}}\left( {{\textrm{2}},:} \right)\); \({{{\varvec{E}}}}_2^ * = \left[ {2{{\dot{\theta }}_{i1}}\left( {{{{{\varvec{s}}}}_{i1}} \times {{{{\varvec{m}}}}_{i32}}} \right) + \left( {{{{{\varvec{s}}}}_{i2}} \times {{{{\varvec{m}}}}_{i32}}} \right) {{{\dot{\varvec{\theta }}}}^{\textrm{T}}}{{{\varvec{G}}}}_{Bi}^{\textrm{T}}\left( {{\textrm{2}},:} \right) } \right] {{{{\varvec{G}}}}_{Bi}}\left( {{\textrm{2}},:} \right)\); \({{{\varvec{E}}}}_3^ * = 2\left[ {\left( {{{{{\varvec{s}}}}_{i2}} \times {{{{\varvec{s}}}}_{i3}}} \right) {{{\dot{\varvec{\theta }}}}^{\textrm{T}}}{{{\varvec{G}}}}_{Bi}^{\textrm{T}}\left( {{\textrm{2}},:} \right) + {{\dot{\theta }}_{i1}}\left( {{{{{\varvec{s}}}}_{i1}} \times {{{{\varvec{s}}}}_{i3}}} \right) } \right] {{{{\varvec{G}}}}_{Bi}}\left( {1,:} \right)\).

Appendix F

\({{{{\varvec{M}}}}_q} = \left[ {\begin{array}{*{20}{c}} {{{\varvec{N}}}}\\ {\left[ {\left( {{}^A{{{\varvec{r}}}_{A,O}} - {{{{\varvec{P}}}}_0}} \right) \times } \right] {{{\varvec{N}}}} + \left[ {\left( {\left[ {\left( {{}^A{{{\varvec{r}}}_{A,O}} - {{{{\varvec{P}}}}_0}} \right) \times } \right] {{{\varvec{J}}}{\dot{\varvec{\theta }}}}} \right) \times } \right] {{{\varvec{J}}}}} \end{array}} \right]\).

In \({{{{\varvec{M}}}}_q}\), \({{{\varvec{N}}}} = {{{{\varvec{J}}}}_\omega }{{{{\varvec{N}}}}_\chi } + {{{{\varvec{N}}}}_\omega }{{{{\varvec{J}}}}_\chi }\). In \({{{\varvec{N}}}}\), \({{{{\varvec{N}}}}_\chi } = {{{{\varvec{J}}}}_0}\left( {{{{{\varvec{N}}}}_1} - {{{{\varvec{N}}}}_2} + {{{{\varvec{J}}}}_2}{{{{\varvec{E}}}}_{MC}}} \right)\); \({{{{\varvec{N}}}}_\omega } = \left[ {\begin{array}{*{20}{c}} { - {\textrm{c}}\gamma {\textrm{s}}\beta \dot{\beta }- {\textrm{c}}\beta {\textrm{s}}\gamma \dot{\gamma }}&{}{ - {\textrm{c}}\gamma \dot{\gamma }}&{}0\\ { - {\textrm{s}}\gamma {\textrm{s}}\beta \dot{\beta }+ {\textrm{c}}\beta {\textrm{c}}\gamma \dot{\gamma }}&{}{ - {\textrm{s}}\gamma \dot{\gamma }}&{}0\\ { - {\textrm{c}}\beta \dot{\beta }}&{}0&{}0 \end{array}} \right]\). In \({{{{\varvec{N}}}}_\chi }\), \({{{{\varvec{N}}}}_1} = \left[ {\begin{array}{*{20}{c}} 0&{}{r{\textrm{s}}\beta \dot{\beta }}&{}0\\ 0&{}{r{\textrm{s}}\gamma {\textrm{c}}\beta \dot{\beta }}&{}{r\left( {2{\textrm{c}}\gamma {\textrm{s}}\beta \dot{\beta }+ {\textrm{s}}\gamma {\textrm{c}}\beta \dot{\gamma }} \right) }\\ {{a_4}}&{}{{a_5}}&{}{{c_1}{\textrm{c}}\alpha {\textrm{c}}\beta \dot{\beta }} \end{array}} \right] {{{\varvec{J}}}}\); \({{{{\varvec{N}}}}_2} = \left[ {\begin{array}{*{20}{c}} { - {n_1}}&{}0&{}{{n_3}}\\ { - n_1^ * }&{}0&{}{n_3^ * }\\ 0&{}{{n_2}}&{}0 \end{array}} \right]\); \({{{{\varvec{E}}}}_{MC}} = \left[ {\begin{array}{*{20}{c}} {{{{{\varvec{E}}}}_M}\left( {2,:} \right) }\\ {{{{{\varvec{E}}}}_M}\left( {4,:} \right) }\\ {{{{{\varvec{E}}}}_M}\left( {6,:} \right) } \end{array}} \right]\). In \({{{{\varvec{N}}}}_1}\), \({a_4} = \left( {{b_1}{\textrm{s}}\alpha + {c_1}{\textrm{c}}\alpha } \right) {\textrm{c}}\beta \dot{\alpha }\); \({a_5} = 2\left( {{b_1}{\textrm{c}}\alpha - {c_1}{\textrm{s}}\alpha } \right) {\textrm{s}}\beta \dot{\alpha }+ \left( {{x_0}{\textrm{s}}\beta + {b_1}{\textrm{s}}\alpha {\textrm{c}}\beta + {c_1}{\textrm{c}}\alpha {\textrm{c}}\beta } \right) \dot{\beta }\).

Appendix G

\({{{\varvec{F}}}} = \sum \limits _{i = 1}^3 {\sum \limits _{c = 1}^3 {\left( {{m_{ic}}{{{\varvec{v}}}}_{ic,\dot{\theta }}^{\textrm{T}}{{{\varvec{g}}}}} \right) } } + \sum \limits _{i = 1}^3 {{{\varvec{\omega }}}_{i1,\dot{\theta }}^{\textrm{T}}{\tau _{i1}}{{{{\varvec{s}}}}_{i1}}} + {m_0}{{{\varvec{v}}}}_{0,\dot{\theta }}^{\textrm{T}}{{{\varvec{g}}}} + {{{\varvec{v}}}}_{0,\dot{\theta }}^{\textrm{T}}{{{{\varvec{f}}}}_0} + {{{{\varvec{J}}}}^{\textrm{T}}}{{{{\varvec{n}}}}_0}\),

\({{{{\varvec{F}}}}^*} = \sum \limits _{i = 1}^3 {\sum \limits _{c = 1}^3 {\left( { - {m_{ic}}{{{\varvec{v}}}}_{ic,\dot{\theta }}^{\textrm{T}}{{{{\varvec{a}}}}_{ic}} - {{\varvec{\omega }}}_{ic,\dot{\theta }}^{\textrm{T}}\left( {{{{{\varvec{I}}}}_{ic}}{{{\varvec{\varepsilon }}}_{ic}} + {{{\varvec{\omega }}}_{ic}} \times {{{{\varvec{I}}}}_{ic}}{{{\varvec{\omega }}}_{ic}}} \right) } \right) - {m_0}} } {{{\varvec{v}}}}_{0,\dot{\theta }}^{\textrm{T}}{{{{\varvec{a}}}}_0} - {{{{\varvec{J}}}}^{\textrm{T}}}\left( {{{{{\varvec{I}}}}_0}{{{\varvec{\varepsilon }}}_0} + {{{\varvec{\omega }}}_0} \times {{{{\varvec{I}}}}_0}{{{\varvec{\omega }}}_0}} \right)\).

where \(\textit{m}_{ic}\) and \({{\varvec{I}}}_{ic}\) are the mass and inertia matrix of the link \(\textit{ic}\), and \({{{{\varvec{I}}}}_{ic}} = {{{\varvec{R}}}_{ic}}{}^{ic}{{{\varvec{IR}}}}_{ic}^{\textrm{T}}\); \({}^{ic}{{{\varvec{I}}}}\) is the inertia matrix of the link \(\textit{ic}\) in \({\textit{P}_{ic}}-{{{x}_{ic}}{{y}_{ic}}{{z}_{ic}}}\); \(\textit{m}_{0}\) and \({{{\varvec{I}}}}_0\) are the mass and inertia matrix of the motion complex, and \({{{{\varvec{I}}}}_{0}} = {{{\varvec{R}}}_{0}}{}^{0}{{{\varvec{IR}}}}_{0}^{\textrm{T}}\); \({}^{0}{{{\varvec{I}}}}\) is the inertia matrix of the motion complex in \({\textit{C}_{23}}-{xyz}\); \({\tau _{i1}}\) is the driving torque of limb \(\textit{i}\); \({{\varvec{g}}}\) is the acceleration of gravity; \({{{\varvec{f}}}}_0\) and \({{{\varvec{n}}}}_0\) are the external force and torque equivalent to the barycenter of the motion complex; \({{{\varvec{\omega }}}_{ic,\dot{\theta }}}\) and \({{{{\varvec{v}}}}_{ic,\dot{\theta }}}\) are the sub-matrices consisting of the first three rows and the last three rows of \({{{\varvec{G}}}}_q^{ic}\); \({{{{\varvec{v}}}}_{0,\dot{\theta }}}\) is the sub-matrix consisting of the last three rows of \({{{{\varvec{G}}}}_q}\).

Appendix H

\({{{\varvec{M}}}} = \sum \limits _{i = 1}^3 {\sum \limits _{c = 1}^3 {\left( {{m_{ic}}{{{\varvec{v}}}}_{ic,\dot{\theta }}^{\textrm{T}}{{{{\varvec{v}}}}_{ic,\dot{\theta }}} + {{\varvec{\omega }}}_{ic,\dot{\theta }}^{\textrm{T}}{{{{\varvec{I}}}}_{ic}}{{{\varvec{\omega }}}_{i1,\dot{\theta }}}} \right) + {{{{\varvec{J}}}}^{\textrm{T}}}{{{{\varvec{I}}}}_0}{{{\varvec{J}}}} + {m_0}{{{\varvec{v}}}}_{0,\dot{\theta }}^{\textrm{T}}{{{{\varvec{v}}}}_{0,\dot{\theta }}}} }\),

\({{{\varvec{C}}}} = \sum \limits _{i = 1}^3 {\sum \limits _{c = 1}^3 {\left( {{m_{ic}}{{{\varvec{v}}}}_{ic,\dot{\theta }}^{\textrm{T}}{{{\varvec{E}}}}_{qv}^{ic} + {{\varvec{\omega }}}_{i1,\dot{\theta }}^{\textrm{T}}{{{{\varvec{H}}}}_1}} \right) } } + {{{{\varvec{J}}}}^{\textrm{T}}}{{{{\varvec{H}}}}_2} + {m_0}{{{\varvec{v}}}}_{0,\dot{\theta }}^{\textrm{T}}{{{{\varvec{M}}}}_{qv}}\),

\({{{\varvec{G}}}} = - \sum \limits _{i = 1}^3 {\sum \limits _{c = 1}^3 {\left( {{m_{ic}}{{{\varvec{v}}}}_{ic,\dot{\theta }}^{\textrm{T}}{{{\varvec{g}}}}} \right) } } - {{{\varvec{v}}}}_{0,\dot{\theta }}^{\textrm{T}}\left( {{m_0}{{{\varvec{g}}}} + {{{{\varvec{f}}}}_0}} \right) - {{{{\varvec{J}}}}^{\textrm{T}}}{{{{\varvec{n}}}}_0}\).

In \({{\varvec{C}}}\), \({{{{\varvec{H}}}}_1} = {{{{\varvec{I}}}}_{ic}}{{{\varvec{E}}}}_{q\omega }^{ic} + \left[ {{{{\varvec{\omega }}}_{i1,\dot{\theta }}} \times } \right] {{{{\varvec{I}}}}_{ic}}{{{\varvec{\omega }}}_{i1,\dot{\theta }}}\); \({{{{\varvec{H}}}}_2} = {{{{\varvec{I}}}}_0}{{{\varvec{N}}}} + \left[ {{{{\varvec{\omega }}}_0} \times } \right] {{{{\varvec{I}}}}_0}{{{\varvec{J}}}}\); \({{{\varvec{E}}}}_{q\omega }^{ic}\) and \({{{\varvec{E}}}}_{qv}^{ic}\) are the sub-matrices consisting of the first three rows and the last three rows of \({{{\varvec{E}}}}_q^{ic}\); \({{\varvec{M}}}_{qv}\) is the sub-matrix consisting of the last three rows of \({{\varvec{M}}}_q\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Niu, Y. & Liu, F. Design and Verification of Parallel Hip Exoskeleton Considering Output Torque Anisotropy. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00500-y

Keywords

Navigation