Skip to main content
Log in

Turbulent Processes in the Oman Sea: A Numerical Study

  • HYDROPHYSICAL PROCESSES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

In this investigation, the General Ocean Turbulent Model (GOTM) was used for the investigation of turbulent processes of a water column over a study site in the Oman Sea. The used method appropriately reproduces the main features of the study area, allows for a realistic view of the turbulence, and thus makes it possible to compare the Mixed Layer Depth (MLD) in all seasons. The MLD varies from 150 m in spring to 200 m in autumn. This simulation presented that the production of Turbulent Kinetic Energy (TKE) in the seawater column in the Oman Sea has seasonal changes. In the surface layer, TKE is small which is produced by low quantities of shear production, then it is conserved by the wind stress on the mixed layer and buoyancy production. In the deep layer, TKE is produced only by buoyancy. Calculated Prandtl number in all seasons presented that the turbulent diffusivity of temperature is dominant in most parts of water column, except in a thin layer which forms approximately between the depths of 150–200 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Bonino, G., Iovino, D., and Masina, S., Ocean sensitivity to bulk formulae parameterization: a NEMO-ORCA025 model study, 2020, vol. 22, p. 9591.

  2. Boodhraj, K., Vichi, M., and Smit, J.E., An assessment of the role of the k–ε vertical mixing scheme in the simulation of Southern Ocean upper dynamics, South Afr. Soc. For., p. 6.

  3. Brasseur, J.G. and Wei, T., Designing large-eddy simulation of the turbulent boundary layer to capture law-of-the-wall scaling, Phys. Fluids, 2010, vol. 22, 021303.

    Article  Google Scholar 

  4. Brown, J., Application of POLCOMS Model to Liverpool Bay Residual Currents, 2017.

  5. Bruggeman, J. and Bolding, K., A general framework for aquatic biogeochemical models, Environ. Model. Softw., 2014, vol. 61, pp. 249–265.

    Article  Google Scholar 

  6. Brumer, S.E., Garnier, V., Redelsperger J.-L., Bouin, M.-N., Ardhuin, F., and Accensi, M., Impacts of surface gravity waves on a tidal front: a coupled model perspective, Ocean Model, 2020, vol. 154, 101677.

    Article  Google Scholar 

  7. Burchard, H. and Bolding, K., Comparative analysis of four second-moment turbulence closure models for the oceanic mixed layer, J. Phys. Oceanogr., 2001, vol. 31, pp. 1943–1968.

    Article  Google Scholar 

  8. Canuto, V.M., Howard, A., Cheng, Y., and Dubovikov, M.S., Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities, J. Phys. Oceanogr., 2001, vol. 31, pp. 1413–1426.

    Article  Google Scholar 

  9. Carton, J.A., Chepurin, G.A., Chen, L., and Grodsky, S.A., Improved global net surface heat flux, J. Geophys. Res.: Oceans, 2018, vol. 123, pp. 3144–3163.

    Article  Google Scholar 

  10. Cheng, N.-S. and Law, A.W.-K., Measurements of turbulence generated by oscillating grid. J. Hydraul. Eng., 2001, vol. 127, pp. 201–208.

    Article  Google Scholar 

  11. Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A., and Edson, J.B., Bulk parameterization of air–sea fluxes: updates and verification for the COARE Algorithm, J. Clim., 2003, vol. 16, pp. 571–591.

    Article  Google Scholar 

  12. Fodor, K., Mellado, J.P., and Wilczek, M., On the role of large-scale updrafts and downdrafts in deviations from Monin–Obukhov similarity theory in free convection, Bound.-Layer Meteorol., 2019, vol. 172, pp. 371–396.

    Article  Google Scholar 

  13. Foken, T., 50 years of the Monin–Obukhov similarity theory, Bound-Layer Meteorol., 2006, vol. 119, pp. 431–447.

    Article  Google Scholar 

  14. Frederickson, P.A., Davidson, K.L., Zeisse, C.R., and Bendall, C.S., Estimating the refractive index structure parameter over the ocean using bulk methods, J. Appl. Meteorol., 2000, vol. 39, pp. 1770–1783.

    Article  Google Scholar 

  15. Hallberg, R., The ability of large-scale ocean models to accept parameterizations of boundary mixing, and a description of a refined bulk mixed-layer model, Proceedings of the 2003 Aha Hulikoa Hawaiian Winter Workshop, 2003, pp. 187–203.

  16. Hanert, E., Deleersnijder, E., and Legat, V., An adaptive finite element water column model using the Mellor–Yamada level 2.5 turbulence closure scheme, Ocean Model., 2006, vol. 12, pp. 205–223.

    Article  Google Scholar 

  17. Hyun-Chae, J., Byung-Kwon, M., Wie, J., Park, H.-S., Lee, J., and Young-Hwa, B., A single-column ocean biogeochemistry model (GOTM–TOPAZ) version 1.0, Geosci. Model Dev., 2019, vol. 12, pp. 699–722.

    Article  Google Scholar 

  18. Kalra, T.S., Li, X., Warner, J.C., Geyer, W.R., and Wu, H., Comparison of physical to numerical mixing with different tracer advection schemes in estuarine environments, J. Mar. Sci. Eng., vol. 2019, vol. 7, p. 338.

  19. Khademi, I., Akbarinasab, M., Bidokhti, A.A., and Khalilabadi, M.R., Numerical calculation of Prandtl number in the stratification of water column of the Hormuz Strait, J. Mar. Sci. Technol., 2017, vol. 16 pp. 14–26.

    Google Scholar 

  20. Khalilabadi, M.R., 3D modeling of circulation in the Oman sea using the MITgcm model, Hydrophysycs, 2016, vol. 2, no. 2, pp. 61–68.

    Google Scholar 

  21. Khalilabadi, M.R., The effect of meteorological events on sea surface height variations along the northwestern Persian Gulf, Curr. Sci., 2016, vol. 110, no. 11, pp. 2138–2141.

    Article  Google Scholar 

  22. Khalilabadi, M.R. and Hassantabar, B.S.H., Investigation of magnetic field fluctuations due to sea waves in the Strait of Hormuz, IJCOE, 2016 vol. 8, No. 1, pp. 10–15.

  23. Khalilabadi, M.R.K., Ashkezari GD, and Derakhshan, P., Modeling Marine Currents in the Gulf of Oman using the Mike3D Model, J. Environ. Sci. Studies (JESS), 2020, vol. 5, pp. 2404–2412.

    Google Scholar 

  24. Kim, S.B., Yamaguchi, K., Kondo, A., and Soda S., A comparative study of the Mellor–Yamada and k–ε two-equation turbulence models in atmospheric application, J. Wind. Eng. Ind. Aerodyn., 2003, vol. 91, pp. 791–806.

    Article  Google Scholar 

  25. Klocker, A. and McDougall, T.J., Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion, J. Phys. Oceanogr., 2010, vol. 40, pp. 1690–709.

    Article  Google Scholar 

  26. van der Laan, M.P., Kelly, M.C., and Sørensen, N.N., A new k-epsilon model consistent with Monin–Obukhov similarity theory, Wind Energy, 2017, vol. 20, pp. 479–89.

    Article  Google Scholar 

  27. Lai, A.C., Law, A.W.-K., and Adams, E.E., A second-order integral model for buoyant jets with background homogeneous and isotropic turbulence, J. Fluid. Mech., 2019, vol. 871, pp. 271–304.

    Article  CAS  Google Scholar 

  28. Liu, J., Lu, S., and Li, Y., Numerical study on sensibility of turbulence closure schemes at Oujiang River Estuary, Appl. Ocean Res., 2019, vol. 88, pp. 76–88.

    Article  Google Scholar 

  29. Luneva, M.V., Wakelin, S., Holt, J.T., Inall, M.E., Kozlov, I.E., Palmer, M.R., et al., Challenging vertical turbulence mixing schemes in a tidally energetic environment: 1. 3-D shelf-sea model assessment, J. Geophys Res. Oceans, 2019, vol. 124, pp. 6360–6387.

    Article  Google Scholar 

  30. Ma, L., Wang, B., and Zhang, X., Impact of seawater equation of state on the simulation of Atlantic Meridional Overturning Circulation, Clim. Dyn., 2020, vol. 54, pp. 1161–1178.

    Article  Google Scholar 

  31. Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., et al., NEMO Ocean Engine, 2017.

  32. Maity, S. and Warrior, H., Reynolds stress anisotropy based turbulent eddy viscosity model applied to numerical ocean models, J. Fluids Eng., 2011, vol. 133.

  33. Mallick, S.K., Agarwal, N., Sharma, R., Prasad, K., and Ramakrishna, S., Thermodynamic response of a high-resolution Tropical Indian Ocean Model to TOGA COARE Bulk Air–Sea Flux parameterization: case study for the Bay of Bengal (BoB), Pure Appl. Geophys., 2020, pp. 1–20.

  34. Millero, F.J., History of the equation of state of seawater, Oceanography, 2010, vol. 23, pp. 18–33.

    Article  Google Scholar 

  35. Mohammadi-Aragh, M., Klingbeil, K., Brüggemann, N., Eden, C., and Burchard, H., The impact of advection schemes on restratifiction due to lateral shear and baroclinic instabilities, Ocean Model., 2015, vol. 94, pp. 112–127.

  36. Mollaesmaeilpour, S., Mohammad, M.M., Hasanzadeh, E., and Khalilabadi, M.R., 3D Modeling of wind-driven circulation in the Northern Indian Ocean during monsoon, J. Oceanogr., 2019, vol. 10, no. 38, pp. 17–28.

    Article  Google Scholar 

  37. Mollaesmaeilpour, S., Mohammad, M.M., Hassanzadeh, S., and Khalilabadi, M.R., The study of hydrophysical properties of the Northern Arabian Sea during monsoon: a numerical study, Hydrophis., 2019, vol. 5, no. 8, pp. 47–59.

    Google Scholar 

  38. Nakajima, K., Ooka, R., and Kikumoto, H., Evaluation of k-ε Reynolds stress modeling in an idealized urban canyon using LES, J. Wind. Eng. Ind. Aerodyn., 2018, vol. 175, pp. 213–28.

    Article  Google Scholar 

  39. Optis, M., Monahan, A., and Bosveld, F.C., Moving beyond Monin–Obukhov similarity theory in modelling wind-speed profiles in the lower atmospheric boundary layer under stable stratification, Bound.-Layer Meteorol., 2014, vol. 153, pp. 497–514.

    Article  Google Scholar 

  40. Perez, L., Cossu, R., Grinham, A., and Penesis, I., Evaluation of wave-turbulence decomposition methods applied to experimental wave and grid-generated turbulence data, Ocean. Eng., 2020, vol. 218, 108186.

    Article  Google Scholar 

  41. Sasmal, K., Maity, S., and Warrior, H.V., On the application of a new formulation of nonlinear eddy viscosity based on anisotropy to numerical ocean models, J. Turbul., 2014, vol. 15, pp. 516–539.

    Article  Google Scholar 

  42. Sukoriansky, S., Galperin, B., and Perov, V., Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice, Bound-Layer Meteorol., 2005, vol. 117, pp. 231–257.

    Article  Google Scholar 

  43. Thomas, S., Babanin, A.V., Walsh, K.J., Stoney, L., and Heil, P., Effect of wave-induced mixing on Antarctic Sea ice in a high-resolution ocean model, Ocean Dyn., 2019, vol. 69, pp. 737–746.

    Article  Google Scholar 

  44. Umlauf, L., Burchard, H., and Hutter, K., Extending the k–ω turbulence model towards oceanic applications, Ocean Model., 2003, vol. 5, pp. 195–218.

    Article  Google Scholar 

  45. Umlauf, L. and Burchard, H., Second-order turbulence closure models for geophysical boundary layers. A review of recent work, Cont. Shelf. Res., 2005, vol. 25, pp. 795–827.

    Article  Google Scholar 

  46. Umlauf, L., Burchard, H., and Bolding, K., GOTM: Source Code and Test Case Documentation, Devel Version-Pre, 2006, vol. 4.

    Google Scholar 

  47. Vigdorovich, I., A law of the wall for turbulent boundary layers with suction: Stevenson’s formula revisited, Phys. Fluids, 2016, vol. 28, 085102.

    Article  Google Scholar 

  48. Warner, J.C., Sherwood, C.R, Arango, H.G., and Signell, R.P., Performance of four turbulence closure models implemented using a generic length scale method, Ocean Model., 2005, vol. 8, pp. 81–113.

    Article  Google Scholar 

  49. Webster, D.R., Brathwaite, A., and Yen, J., A novel laboratory apparatus for simulating isotropic oceanic turbulence at low Reynolds number, Limnol. Oceanogr. Methods, 2004, vol. 2, pp. 1–12.

    Article  Google Scholar 

  50. Xiao, Q., Tsai, H.-M., and Liu, F., Computation of turbulent separated nozzle flow by a lag model, J. Propuls. Power, 2005, vol. 21, pp. 368–371.

    Article  Google Scholar 

  51. Xu, H., Further Improvements to a Single-column Ocean Model, 2017.

  52. Xu, H. and Pimentel, S., Improvements to a Single-Column Ocean Model, 2016.

  53. Zeng, X. and Wang, Y., A k–ε Turbulence Model for the Convective Atmosphere, J. Atmospheric Sci., 2020, vol. 77, pp. 3891–3906.

    Article  Google Scholar 

  54. General Ocean Turbulence Model, https://gotm.net/.

  55. European Centre for Medium-Range Weather Forecasts, https://www.ecmwf.int/.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Khalilabadi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Reza Khalilabadi Turbulent Processes in the Oman Sea: A Numerical Study. Water Resour 51, 98–109 (2024). https://doi.org/10.1134/S0097807823600717

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807823600717

Keywords:

Navigation