Skip to main content
Log in

Semihard QCD Processes beyond the Collinear Approximation

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The main features and characteristics of the \({{k}_{{\text{T}}}}\)-factorization QCD approach, which is based on BFKL-like noncollinear gluon evolution equations, are outlined. One of the advantages of this approach is connected with a convenience of including a significant part of higher order perturbative QCD corrections. The explicit expression and solutions of some parton distribution evolution equations in the leading logarithmic approximation are presented. Frequently used in calculations gluon and quark distribution functions, which depend on the transverse momenta of the initial interacting particles, are shown. Various techniques to calculate the off-shell amplitudes of parton subprocesses are discussed. The application of the \({{k}_{{\text{T}}}}\)-factorization approach to some QCD processes that are intensively studied in modern experiments at the LHC is considered, in particular, to processes of the single and double production of heavy quarks, as well as the inclusive and associated (correlated with one or two hadronic jets) production of direct photons (or heavy gauge boson) in proton collisions at high energies. A comparison of the obtained results with predictions made using the standard (collinear) approach in the next-to-leading order of perturbative QCD is presented. Basic capabilities and features of modern Monte-Carlo event generators PEGASUS, CASCADE and KATIE are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.

Similar content being viewed by others

Notes

  1. As a rule, the value \({{\mu }^{2}}\) is taken as these scales, which thereby eliminates contributions proportional to \({{\ln {{\mu }^{2}}} \mathord{\left/ {\vphantom {{\ln {{\mu }^{2}}} {\mu _{{\text{R}}}^{2}}}} \right. \kern-0em} {\mu _{{\text{R}}}^{2}}}\) and \({{\ln {{\mu }^{2}}} \mathord{\left/ {\vphantom {{\ln {{\mu }^{2}}} {\mu _{{\text{F}}}^{2}}}} \right. \kern-0em} {\mu _{{\text{F}}}^{2}}}\), which arise when calculating corrections of the higher orders to the parton cross sections calculated in the leading order of perturbative QCD.

  2. The initial conditions for quark and gluon distributions are not calculated within the perturbative QCD. They can be determined, e.g., from experiments on deep inelastic ep-scattering.

  3. Within the leading logarithmic approximation, only terms proportional to \({{\alpha _{s}^{n}{{{\ln }}^{n}}s} \mathord{\left/ {\vphantom {{\alpha _{s}^{n}{{{\ln }}^{n}}s} {\Lambda _{{{\text{QCD}}}}^{2}}}} \right. \kern-0em} {\Lambda _{{{\text{QCD}}}}^{2}}}\) are considered, while within the next-to-leading approximation, also terms of order \({{\alpha _{s}^{{n + 1}}{{{\ln }}^{n}}s} \mathord{\left/ {\vphantom {{\alpha _{s}^{{n + 1}}{{{\ln }}^{n}}s} {\Lambda _{{{\text{QCD}}}}^{2}}}} \right. \kern-0em} {\Lambda _{{{\text{QCD}}}}^{2}}}\).

  4. In QCD, a Pomeron is a bound state of two reggeized gluons and determines the total scattering cross section of a particle. The odderon, which is responsible for the difference between the scattering cross sections of a particle and an antiparticle, is a bound state of three reggeized gluons.

  5. A method for calculating the TMD quark and gluon distributions in the proton using a numerical solution of the DGLAP evolution equations was proposed within the so-called parton branching approach (PB) [97, 98] (see also [99, 100]).

  6. A detailed description of the corresponding calculations is given in [118].

  7. https://theory.sinp.msu.ru/doku.php/pegasus/news.

  8. Various methods for calculating the gluon density (in the leading and next-to-leading orders of perturbative QCD) from experimental data for the functions \({{F}_{2}}(x,{{Q}^{2}})\), \({{F}_{{\text{L}}}}(x,{{Q}^{2}})\) and the logarithmic derivative \({{\partial {{F}_{2}}(x,{{Q}^{2}})} \mathord{\left/ {\vphantom {{\partial {{F}_{2}}(x,{{Q}^{2}})} {\partial \ln {{Q}^{2}}}}} \right. \kern-0em} {\partial \ln {{Q}^{2}}}}\) have been proposed, e.g., in [175179].

  9. A similar approach can be used to study the TMD quark distribution function in the proton using Drell–Yan processes [190].

  10.  An essential part of the mathematical calculations may be the expansion of the amplitude into a suitable set of basis vectors (orthogonal amplitude method). This method was proposed in [196] and was widely used previously (see, e.g., [197201]). A rigorous justification of the method is given in [197]. Using the orthogonal amplitude method can significantly reduce the volume and time of computer calculations.

  11.  The processes of associative production of direct photons and heavy quark jets at the Tevatron collider within the \({{k}_{{\text{T}}}}\)-factorization approach were considered in [207, 208]. In addition, the processes of inclusive production of direct photons in \(ep\) and \(pp\) collisions were studied [208, 210], as well as the processes of production of photon pairs [211] (see also [154]).

  12.  In contrast to the usual collinear perturbative QCD, where the kinematics (and the very presence) of jets is determined only by the corresponding amplitude of parton scattering.

  13. See also calculations [46].

REFERENCES

  1. J. Collins, Foundations of Perturbative QCD (Cambridge University Press, 2011).

    Book  Google Scholar 

  2. A. Efremov and A. Radyushkin, “Hard processes, parton model and QCD,” Rivista del Nuovo Cimento 3, 1 (1980).

    Article  MathSciNet  Google Scholar 

  3. J. Collins, D. Soper, and G. Sterman, “Factorization of Hard Processes in QCD,” in Advanced Series on Directions in High Energy Physics, Vol. 5, pp. 1–91 (1989).

  4. V. Gribov and L. Lipatov, “Deep-inelastic ep scattering in perturbation theory,” Yad. Fiz. 15, 781—807 (1972).

    Google Scholar 

  5. V. Gribov and L. Lipatov, “Annihilation of e + e pairs and deep-inelastic ep scattering in perturbation theory,” Yad. Fiz. 15, 1218–1237 (1972).

    Google Scholar 

  6. G. Altarelli and G. Parisi, “Asymptotic freedom in parton language,” Nucl. Phys. B 126, 298—318 (1977).

    Article  ADS  Google Scholar 

  7. Yu. Dokshitzer, “Calculation of structure functions of deep-inelastic scattering and e + e annihilation by perturbation theory in quantum chromodynamics,” Sov. Phys. JETP 46, 641 (1977).

    ADS  Google Scholar 

  8. F. Aaron, H. Abramowicz, I. Abt, L. Adamczyk, M. Adamus, M. M. Al-daya, C. Alexa, V. Andreev, S. Antonelli, et al., “Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA,” J. High Energy Phys. 2010, 109 (2010).

    Article  Google Scholar 

  9. F. Aaron, H. Abramowicz, I. Abt, L. Adamczyk, M. Adamus, M. M. Al-daya, C. Alexa, V. Andreev, S. Antonelli, et al., “Combination and QCD Analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA,” Eur. Phys. J. C 73, 2311 (2013).

    Article  ADS  Google Scholar 

  10. G. Aad et al. (ATLAS Collab.), “Measurement of the transverse momentum distribution of Drell–Yan lepton pairs in proton-proton collisions at \(\sqrt s \) = 13 TeV with the ATLAS detector,” Eur. Phys. J. C 80, 616 (2020).

    Article  ADS  Google Scholar 

  11. A. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, et al., “Measurements of differential Z boson production cross sections in proton-proton collisions at \(\sqrt s \) = 13 TeV,” J. High Energy Phys. 2019, 059 (2019).

  12. J. Collins and D. Soper, “Parton distribution and decay functions,” Nucl. Phys. B 194, 445—492 (1982).

    Article  ADS  Google Scholar 

  13. J. Collins, D. Soper, and G. Sterman, “Transverse momentum distribution in Drell–Yan pair and W and Z boson production,” Nucl. Phys. B 250, 199—224 (1985).

    Article  ADS  Google Scholar 

  14. E. Kuraev, L. Lipatov, and V. Fadin, “Multiregge processes in the Yang–Mills theory,” Sov. Phys. JETP 44, 443 (1976).

    ADS  Google Scholar 

  15. E. Kuraev, L. Lipatov, and V. Fadin, “The Pomeranchuk singularity in nonabelian gauge theories,” Sov. Phys. JETP 45, 199 (1977).

    ADS  MathSciNet  Google Scholar 

  16. I. Balitsky and L. Lipatov, “On the Pomeranchuk singularity in quantum chromodynamics,” Yad. Fiz. 28, 1597—1611 (1978).

    Google Scholar 

  17. M. Ciafaloni, “Coherence effects in initial jets at small Q 2/s,” Nucl. Phys. B 296, 49–74 (1988).

    Article  ADS  Google Scholar 

  18. S. Catani, F. Fiorani, and G. Marchesini, “QCD coherence in initial state radiation,” Phys. Lett. B 234, 339—345 (1990).

    Article  ADS  Google Scholar 

  19. S. Catani, F. Fiorani, and G. Marchesini, “Small-x behaviour of initial state radiation in perturbative QCD,” Nucl. Phys. B 336, 18–85 (1990).

    Article  ADS  Google Scholar 

  20. G. Marchesini, “QCD coherence in the structure function and associated distributions at small x,” Nucl. Phys. B 445, 49—78 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  21. L. Gribov, E. Levin, and M. Ryskin, “Semihard processes in QCD,” Phys. Rep. 100, 1–150 (1983).

    Article  ADS  Google Scholar 

  22. E. Levin, M. Ryskin, A. Shuvaev, and Yu. Shabelsky, “Production of heavy quarks in semihard interactions of nucleons,” Yad. Fiz. 53, 1059–1077 (1991).

    Google Scholar 

  23. S. Catani, M. Ciafaloni, and F. Hautmann, “High energy factorization and small-x heavy flavour production,” Nucl. Phys. B 366, 135–188 (1991).

    Article  ADS  Google Scholar 

  24. J. Collins and R. Ellis, “Heavy-quark production in very high energy hadron collisions,” Nucl. Phys. B 360, 3–30 (1991).

    Article  ADS  Google Scholar 

  25. J. Collins and D. Soper, “Back-to-back jets in QCD,” Nucl. Phys. B 193, 381–443 (1981).

    Article  ADS  Google Scholar 

  26. J. Collins, D. Soper, and G. Sterman, “Factorization for one-loop corrections in the Drell–Yan process,” Nucl. Phys. B 223, 381–421 (1983).

    Article  ADS  Google Scholar 

  27. J. Collins, D. Soper, and G. Sterman, “Does the Drell–Yan cross section factorize?,” Phys. Lett. B 109, 388—392 (1982).

    Article  ADS  Google Scholar 

  28. R. Meng, F. Olness, and D. Soper, “Semi-inclusive deeply inelastic scattering at small q T,” Phys. Rev. D, 1919–1935 (1996).

  29. P. Nadolsky, D. Stump, and C. P. Yuan, “Semi-inclusive hadron production at DESY HERA: The effect of QCD gluon resummation,” Phys. Rev. D 61, 014003 (1999).

    Article  ADS  Google Scholar 

  30. P. Nadolsky, D. Stump, and C. P. Yuan, “Phenomenology of multiple parton radiation in semi-inclusive deep-inelastic scattering,” Phys. Rev. D 64, 114011 (2001).

    Article  ADS  Google Scholar 

  31. X. D. Ji, J. P. Ma, and F. Yuan, “QCD factorization for semi-inclusive deep inelastic scattering at low transverse momentum,” Phys. Rev. D 71, 034005 (2005).

    Article  ADS  Google Scholar 

  32. X. D. Ji, J. P. Ma, and F. Yuan, “QCD factorization for spin-dependent cross sections in DIS and Drell–Yan processes at low transverse momentum,” Phys. Lett. B 597, 299–308 (2004).

    Article  ADS  Google Scholar 

  33. M. Echevarria, A. Idilbi, and I. Scimemi, “Factorization theorem for Drell–Yan at low q T and transverse-momentum distributions on-the-light-cone,” J. High Energy Phys. 2012, 002 (2012).

  34. J. Y. Chiu, A. Jain, D. Neill, and I. Rothstein, “Rapidity renormalization group,” Phys. Rev. Lett. 108, 151601 (2012).

    Article  ADS  Google Scholar 

  35. A. Bermudez Martinez, P. Connor, D. Dominguez Damiani, L. Estevez Banos, F. Hautmann, H. Jung, J. Lidrych, A. Lelek, M. Mendizabal, M. Schmitz, S. Taheri Monfared, Q. Wang, T. Wening, H. Yang, and R. Zlebcik, “The transverse momentum spectrum of low mass Drell-Yan production at next-to-leading order in the parton branching method,” Eur. Phys. J. C 80, 598 (2020).

    Article  ADS  Google Scholar 

  36. A. Bermudez Martinez, P. Connor, D. Dominguez Damiani, L. Estevez Banos, F. Hautmann, H. Jung, J. Lidrych, M. Schmitz, S. Taheri Monfared, Q. Wang, and R. Zlebcik, “Production of Z bosons in the parton branching method,” Phys. Rev. D 100, 074027 (2019).

    Article  ADS  Google Scholar 

  37. R. Maciula and A. Szczurek, “Intrinsic charm in the nucleon and charm production at large rapidities in collinear, hybrid and k T-factorization approaches,” J. High Energy Phys. 2020, 135 (2020).

    Article  ADS  Google Scholar 

  38. W. Schäfer and A. Szczurek, “Low mass Drell–Yan production of lepton pairs at forward directions at the LHC: A hybrid approach,” Phys. Rev. D 93, 074014 (2016).

    Article  ADS  Google Scholar 

  39. A. Cisek, W. Schäfer, and A. Szczurek, “Production of χc pairs with large rapidity separation in k T-factorization,” Phys. Rev. D 97, 114018 (2018).

    Article  ADS  Google Scholar 

  40. R. Islam, M. Kumar, and V. Rawoot, “k T-factorization approach to the Higgs boson production in ZZ* → 4l channel at the LHC,” Eur. Phys. J. C 79, 181 (2019).

    Article  ADS  Google Scholar 

  41. R. Maciula and A. Szczurek, “Consistent treatment of charm production in higher-orders at tree-level within k T-factorization approach,” Phys. Rev. D 100, 054001 (2019).

    Article  ADS  Google Scholar 

  42. R. Pasechnik, A. Szczurek, and O. Teryaev, “Polarization effects in the central exclusive χc production and the J/ψ angular distributions,” Phys. Rev. D 83, 074017 (2011).

    Article  ADS  Google Scholar 

  43. R. Pasechnik, A. Szczurek, and O. Teryaev, “Nonperturbative and spin effects in the central exclusive production of the tensor χc(2+) meson,” Phys. Rev. D 81, 034024 (2010).

    Article  ADS  Google Scholar 

  44. R. Pasechnik, A. Szczurek, and O. Teryaev, “Elastic double diffractive production of axial-vector χc(1++) mesons and the Landau–Yang theorem,” Phys. Lett. B 680, 62—71(2009).

    Article  ADS  Google Scholar 

  45. A. Szczurek, R. Pasechnik, and O. Teryaev, “ppppη” reaction at high energies,” Phys. Rev. D 75, 054021 (2007).

    Article  ADS  Google Scholar 

  46. R. Pasechnik, O. Teryaev, and A. Szczurek, “Scalar Higgs boson production in fusion of two off-shell gluons,” Eur. Phys. J. C 47, 429—435 (2006).

    Article  ADS  Google Scholar 

  47. M. Deak and F. Schwennsen, “Z and W ± production associated with quark-antiquark pair in k T-factorization at the LHC,” J. High Energy Phys. 2008, 035 (2008).

  48. T. Pietrycki and A. Szczurek, “Photon-jet correlations in pp and \(p\bar {p}\) collisions,” Phys. Rev. D 76, 034003 (2007).

    Article  ADS  Google Scholar 

  49. P. Hägler, R. Kirschner, A. Schäfer, L. Szymanowski, and O. Teryaev, “Heavy-quark production as a sensitive test for an improved description of high-energy hadron collisions,” Phys. Rev. D 62, 071502 (2000).

    Article  ADS  Google Scholar 

  50. S. Baranov and M. Smizanska, “Semihard b-quark production at high energies versus data and other approaches,” Phys. Rev. D 62, 014012 (2000).

    Article  ADS  Google Scholar 

  51. G. Curci, W. Furmanski, and R. Petronzio, “Evolution of parton densities beyond leading order: The non-singlet case,” Nucl. Phys. B 175, 27—92 (1980).

    Article  ADS  Google Scholar 

  52. W. Furmanski and R. Petronzio, “Singlet parton densities beyond leading order,” Phys. Lett. B 97, 437—442 (1980).

    Article  ADS  Google Scholar 

  53. S. Moch, J. Vermaseren, and A. Vogt, “The three-loop splitting functions in QCD: The non-singlet case,” Nucl. Phys. B 688, 101–134 (2004).

    Article  ADS  Google Scholar 

  54. A. Vogt, S. Moch, and J. Vermaseren, “The three-loop splitting functions in QCD: The singlet case,” Nucl. Phys. B 691, 129–181 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Froissart, “Asymptotic behavior and subtractions in the Mandelstam representation,” Phys. Rev. 123, 1053–1057 (1961).

    Article  ADS  Google Scholar 

  56. M. Botje, “QCDNUM: Fast QCD evolution and convolution,” Comput. Phys. Commun. 182, 490–532 (2011).

    Article  ADS  Google Scholar 

  57. G. Salam and J. Rojo, “A higher order perturbative parton evolution toolkit (HOPPET),” Comput. Phys. Commun. 180, 120–156 (2009).

    Article  ADS  Google Scholar 

  58. V. Bertone, S. Carrazza, and J. Rojo, “APFEL: A PDF evolution library with QED corrections,” Comput. Phys. Commun. 185, 1647–1668 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Vogt, “Efficient evolution of unpolarized and polarized parton distributions with QCD-PEGASUS,” Comput. Phys. Commun. 170, 65–92 (2005).

    Article  ADS  Google Scholar 

  60. T. Regge, “Introduction to complex orbital momenta,” Nuovo Cimento 14, 951—976 (1959).

    Article  MathSciNet  Google Scholar 

  61. V. Fadin, R. Fiore, M. Kotsky, and A. Papa, “Strong bootstrap conditions,” Phys. Lett. B 495, 329—337 (2000).

    Article  ADS  Google Scholar 

  62. M. Kozlov, A. Reznichenko, and V. Fadin, “Quantum chromodynamics at high energies,” Vestn. Novosibirsk Gos. Univ., Ser. Fiz. 2, 3–31 (2007).

    Google Scholar 

  63. V. Fadin, “Multi-Reggeon processes in QCD,” Phys. At. Nucl. 66, 2017—2032 (2003).

    Article  Google Scholar 

  64. V. Fadin, R. Fiore, and A. Quartarolo, “Reggeization of the quark-quark scattering amplitude in QCD,” Phys. Rev. D 53, 2729—2741 (1996).

    Article  ADS  Google Scholar 

  65. M. Kotsky and V. Fadin, “Reggeization of the amplitude of gluon-gluon scattering,” Phys. At. Nucl. 59, 1035–1045 (1996).

    Google Scholar 

  66. V. Fadin, R. Fiore, and M. Kotsky, “Gluon reggeization in QCD in the next-to-leading order,” Phys. Lett. B 359, 181—188 (1995).

    Article  ADS  Google Scholar 

  67. V. Fadin, R. Fiore, and M. Kotsky, “Gluon Regge trajectory in the two-loop approximation,” Phys. Lett. B 387, 593—602 (1996).

    Article  ADS  Google Scholar 

  68. J. Blümlein, V. Ravindran, and W. van Neerven, “Gluon Regge trajectory in O(\(\alpha _{s}^{2}\)),” Phys. Rev. D 58, 091502 (1998).

    Article  ADS  Google Scholar 

  69. V. Del Duca and E. Glover, “The high energy limit of QCD at two loops,” J. High Energy Phys. 2001, 035 (2001).

  70. Y. Kovchegov, “Unitarization of the BFKL pomeron on a nucleus,” Phys. Rev. D 61, 074018 (2000).

    Article  ADS  Google Scholar 

  71. I. Abt et al. (H1 Collab.), “Measurement of the proton structure function F 2(x, Q 2) in the low-x region at HERA,” Nucl. Phys. B 407, 515—535 (1993).

    Article  ADS  Google Scholar 

  72. J. Bartels, A. Sabio Vera, and F. Schwennsen, “NLO inclusive jet production in k T-factorization,” J. High Energy Phys. 2006, 051 (2006).

  73. V. Fadin, R. Fiore, A. Flachi, and M. Kotsky, “Quark-antiquark contribution to the BFKL kernel,” Phys. Lett. B 422, 287–293 (1998).

    Article  ADS  Google Scholar 

  74. V. Fadin, M. Kotsky, and L. Lipatov, “One-loop correction to the BFKL kernel from two gluon production,” Phys. Lett. B 415, 97—103 (1997).

    Article  ADS  Google Scholar 

  75. V. Fadin and L. Lipatov, “BFKL pomeron in the next-to-leading approximation,” Phys. Lett. B 429, 127–134 (1998).

    Article  ADS  Google Scholar 

  76. M. Ciafaloni and G. Camici, “Energy scale(s) and next-to-leading BFKL equation,” Phys. Lett. B 430, 349–354 (1998).

    Article  ADS  Google Scholar 

  77. G. Salam, “A resummation of large sub-leading corrections at small x,” J. High Energy Phys. 1998, 019 (1998).

  78. M. Ciafaloni, D. Colferai, and G. Salam, “Renormalization group improved small-x equation,” Phys. Rev. D 60, 114036 (1999).

    Article  ADS  Google Scholar 

  79. M. Ciafaloni and D. Colferai, “The BFKL equation at next-to-leading level and beyond,” Phys. Lett. B 452, 372—378 (1999).

    Article  ADS  Google Scholar 

  80. E. Avsar, A. Stasto, D. Triantafyllopoulos, and D. Zaslavsky, “Next-to-leading and resummed BFKL evolution with saturation boundary,” J. High Energy Phys. 2011, 138 (2011).

    Article  ADS  Google Scholar 

  81. G. Altarelli, R. Ball, and S. Forte, “Resummation of singlet parton evolution at small x,” Nucl. Phys. B 575, 313—329 (2000).

    Article  ADS  Google Scholar 

  82. G. Altarelli, R. Ball, and S. Forte, “Small-x resummation and HERA structure function data,” Nucl. Phys. B 599, 383—423 (2001).

    Article  ADS  Google Scholar 

  83. G. Altarelli, R. Ball, and S. Forte, “Factorization and resummation of small x scaling violations with running coupling,” Nucl. Phys. B 621, 359—387 (2002).

    Article  ADS  Google Scholar 

  84. S. Brodsky, V. Fadin, V. Kim, L. Lipatov, and G. Pivovarov, “The QCD Pomeron with optimal renormalization,” JETP Lett. 70, 155—160 (1999).

    Article  ADS  Google Scholar 

  85. S. Brodsky, V. Fadin, V. Kim, L. Lipatov, and G. Pivovarov, “High-energy QCD asymptotics of photon-photon collisions,” JETP Lett. 76, 249–252 (2002).

    Article  ADS  Google Scholar 

  86. S. Brodsky, G. Lepage, and P. Mackenzie, “On the elimination of scale ambiguities in perturbative quantum chromodynamics,” Phys. Rev. D 28, 228–235 (1983).

    Article  ADS  Google Scholar 

  87. I. Balitsky, “Operator expansion for high-energy scattering,” Nucl. Phys. B 463, 99–157 (1996).

    Article  ADS  Google Scholar 

  88. Y. Kovchegov, “Small-x F 2 structure function of a nucleus including multiple Pomeron exchanges,” Phys. Rev. D 60, 034008 (1999).

    Article  ADS  Google Scholar 

  89. M. Gyulassy and L. McLerran, “New forms of QCD matter discovered at RHIC,” Nucl. Phys. A 750, 30—63 (2005).

    Article  ADS  Google Scholar 

  90. J. Kwiecinski, A. Martin, and P. Sutton, “Gluon distribution at small x obtained from a unified evolution equation,” Phys. Rev. D 52, 1445–1458 (1995).

    Article  ADS  Google Scholar 

  91. J. Kwiecinski, A. Martin, and P. Sutton, “Constraints on gluon evolution at small x,” Z. Phys. C 71, 585–594 (1996).

    Article  ADS  Google Scholar 

  92. F. Hautmann, H. Jung, and S. T. Monfared, “The CCFM uPDF evolution UPDFEVOLV version 1.0.00,” Eur. Phys. J. C 74, 3082 (2014).

    Article  ADS  Google Scholar 

  93. H. Jung, S. Baranov, M. Deak, A. Grebenyuk, F. Hautmann, M. Hentschinski, A. Knutsson, M. Krämer, K. Kutak, A. Lipatov, and N. Zotov, “The CCFM Monte Carlo generator CASCADE version 2.2.03,” Eur. Phys. J. C 70, 1237—1249 (2010).

    Article  ADS  Google Scholar 

  94. A. Lipatov, M. Malyshev, and S. Baranov, “Particle event generator: A simple-in-use system PEGASUS version 1.0,” Eur. Phys. J. C 80, 330 (2020).

    Article  ADS  Google Scholar 

  95. M. Kimber, A. Martin, and M. Ryskin, “Unintegrated parton distributions,” Phys. Rev. D 63, 114027 (2001).

    Article  ADS  Google Scholar 

  96. G. Watt, A. Martin, and M. Ryskin, “Unintegrated parton distributions and inclusive jet production at HERA,” Eur. Phys. J. C 31, 73—89 (2003).

    Article  ADS  Google Scholar 

  97. F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik, “Soft-gluon resolution scale in QCD evolution equations,” Phys. Lett. B 772, 446—451 (2017).

    Article  ADS  Google Scholar 

  98. F. Hautmann, H. Jung, A. Lelek, V. Radescu, and R. Zlebcik, “Collinear and TMD quark and gluon densities from parton branching solution of QCD evolution equations,” J. High Energy Phys. 01, 070 (2018).

  99. A. Bermudez Martinez, “Transformation of transverse momentum distributions from parton branching to Collins–Soper–Sterman framework,” Phys. Lett. B 845, 138182 (2023).

    Article  Google Scholar 

  100. M. Mendizabal, F. Guzman, H. Jung, and S. Taheri Monfared, “Transformation of transverse momentum distributions from parton branching to Collins-Soper-Sterman framework,” arXiv:2309.11802 (2023).

  101. K. Golec-Biernat and A. Stasto, “On the use of the KMR unintegrated parton distribution functions,” Phys. Lett. B 781, 633—638 (2018).

    Article  ADS  Google Scholar 

  102. R. Ball et al. (NNPDF Collab.), “Parton distributions from high precision collider data,” Eur. Phys. J. C 77, 663 (2017).

    Article  ADS  Google Scholar 

  103. L. Harland-Lang, A. Martin, P. Motylinski, and R. Thorne, “Parton distributions in the LHC era: MMHT’2014 PDFs,” Eur. Phys. J. C 75, 204 (2015).

    Article  ADS  Google Scholar 

  104. T. J. Hou, S. Dulat, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, C. Schmidt, J. Winter, K. Xie, and C. P. Yuan, “CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis,” J. High Energy Phys. 2018, 059 (2018).

  105. A. Martin, M. Ryskin, and G. Watt, “NLO prescription for unintegrated parton distributions,” Eur. Phys. J. C 66, 163—172 (2010).

    Article  ADS  Google Scholar 

  106. N. Abdulov, A. Bacchetta, S. Baranov, A. Bermudez-Martinez, V. Bertone, C. Bissolotti, V. Candelise, L. Estevez-Banos, M. Bury, et al., “TMDlib2 and TMDplotter: A platform for 3D hadron structure studies,” Eur. Phys. J. C 81, 752 (2021).

    Article  ADS  Google Scholar 

  107. H. Jung, “Un-integrated PDFs in CCFM,” arXiv:hep-ph/0411287 (2004).

  108. F. Hautmann and H. Jung, “Transverse momentum dependent gluon density from DIS precision data,” Nucl. Phys. B 883, 1–19 (2014).

    Article  ADS  Google Scholar 

  109. K. Golec-Biernat and M. Wüsthoff, “Saturation effects in deep inelastic scattering at low Q 2 and its implications on diffraction,” Phys. Rev. D 59, 014017 (1998).

    Article  ADS  Google Scholar 

  110. K. Golec-Biernat and M. Wüsthoff, “Saturation in diffractive deep inelastic scattering,” Phys. Rev. D 60, 114023 (1999).

    Article  ADS  Google Scholar 

  111. N. Nikolaev and B. Zakharov, “Colour transparency and scaling properties of nuclear shadowing in deep inelastic scattering,” Z. Phys. C 49, 607 (1990).

    Article  Google Scholar 

  112. G. Lykasov, V. Bednyakov, A. Grinyuk, M. Poghosyan, and A. Dolbilov, “Gluon distribution in proton at soft and hard pp collisions,” Nucl. Phys. B (Proc. Suppl.) 219–220, 225–228 (2011).

  113. A. Grinyuk, A. Lipatov, G. Lykasov, and N. Zotov, “Transition between soft physics at the LHC and low-x physics at HERA,” Phys. Rev. D 87, 074017 (2013).

    Article  ADS  Google Scholar 

  114. A. Lipatov, G. Lykasov, and N. Zotov, “LHC soft physics and transverse momentum dependent gluon density at low x,” Phys. Rev. D 89, 014001 (2014).

    Article  ADS  Google Scholar 

  115. A. Grinyuk, A. Lipatov, G. Lykasov, and N. Zotov, “Significance of nonperturbative input to the transverse momentum dependent gluon density for hard processes at the LHC,” Phys. Rev. D 93, 014035 (2016).

    Article  ADS  Google Scholar 

  116. N. Abdulov, H. Jung, A. Lipatov, G. Lykasov, and M. Malyshev, “Employing RHIC and LHC data to determine the transverse momentum dependent gluon density in a proton,” Phys. Rev. D 98, 05401 (2018).

    Article  Google Scholar 

  117. A. Lipatov, G. Lykasov, and M. Malyshev, “Towards the global fit of the TMD gluon density in the proton from the LHC data,” Phys. Rev. D 107, 014022 (2023).

    Article  ADS  Google Scholar 

  118. V. Bednyakov, A. Grinyuk, G. Lykasov, and M. Poghosyan, “Role of gluons in soft and semi-hard multiple hadron production in pp collisions at LHC,” Int. J. Mod. Phys. A 27, 1250042 (2012).

    Article  ADS  Google Scholar 

  119. A. Lipatov, G. Lykasov, and M. Malyshev, “Test of the TMD gluon density in a proton with the longitudinal structure function F L(x; Q 2),” Phys. Lett. B 839, 137780 (2023).

    Article  Google Scholar 

  120. F. Aaron, C. Alexa, V. Andreev, S. Backovic, A. Baghdasaryan, S. Baghdasaryan, E. Barrelet, W. Bartel, O. Behrend, et al., “Measurement of the inclusive e ± p scattering cross section at high inelasticity y and of the structure function F L,” Eur. Phys. J. C 71, 1579 (2011).

    Article  ADS  Google Scholar 

  121. S. Chekanov, M. Derrick, S. Magill, B. Musgrave, D. Nicholass, J. Repond, R. Yoshida, M. Mattingly, P. Antonioli, G. Bari, et al., “Measurement of the longitudinal proton structure function at HERA,” Phys. Lett. B 682, 8–22 (2009).

    Article  Google Scholar 

  122. A. Lipatov and M. Malyshev, “TMD parton showers for associated γ + jet production in electron-proton collisions at high energies,” Phys. Rev. D 108, 014022 (2023).

    Article  ADS  Google Scholar 

  123. A. Kotikov, A. Lipatov, B. Shaikhatdenov, and P. Zhang, “Transverse momentum dependent parton densities in a proton from the generalized DAS approach,” J. High Energy Phys. 2020, 028 (2020).

  124. A. Kotikov and G. Parente, “Small x behavior of parton distributions with soft initial conditions,” Nucl. Phys. B 549, 242—262 (1999).

    Article  ADS  Google Scholar 

  125. A. Illarionov, A. Kotikov, and G. Parente, “Small x behavior of parton distributions: A study of higher twist effects,” Phys. Part. Nucl. 39, 307–347 (2008).

    Article  Google Scholar 

  126. L. Mankiewicz, A. Saalfeld, and T. Weigl, “On the analytical approximation to the GLAP evolution at small x and moderate Q 2,” Phys. Lett. B 393, 175–180 (1997).

    Article  ADS  Google Scholar 

  127. A. De Rújula, S. Glashow, H. Politzer, S. Treiman, F. Wilczek, and A. Zee, “Possible non-Regge behavior of electroproduction structure functions,” Phys. Rev. D 10, 1649—1652 (1974).

    Article  ADS  Google Scholar 

  128. G. Cvetic, A. Illarionov, B. Kniehl, and A. Kotikov, “Small-x behavior of the structure function F 2 and its slope \({{\partial \ln {{F}_{2}}} \mathord{\left/ {\vphantom {{\partial \ln {{F}_{2}}} {\partial \ln \left( {{1 \mathord{\left/ {\vphantom {1 x}} \right. \kern-0em} x}} \right)}}} \right. \kern-0em} {\partial \ln \left( {{1 \mathord{\left/ {\vphantom {1 x}} \right. \kern-0em} x}} \right)}}\) for “frozen” and analytic strong-coupling constants,” Phys. Lett. B 679, 350–354 (2009).

    ADS  Google Scholar 

  129. A. Kotikov and B. Shaikhatdenov, “Q 2-evolution of parton densities at small x values. Charm contribution in the combined H1 and ZEUS F2 data,” Phys. Par. Nucl. 48, 829–831 (2017).

    Article  Google Scholar 

  130. A. Kotikov and B. Shaikhatdenov, " Q 2 evolution of parton distributions at small values of x: Effective scale for combined H1 and ZEUS data on the structure function F 2,” Phys. At. Nucl. 78, 525–527 (2015).

    Article  Google Scholar 

  131. D. Shirkov and I. Solovtsov, “Analytic model for the QCD running coupling with universal \({{\bar {\alpha }}_{s}}\left( 0 \right)\) value,” Phys. Rev. Lett. 79, 1209–1212 (1997).

    Article  ADS  Google Scholar 

  132. I. Solovtsov and D. Shirkov, “The analytic approach in quantum chromodynamics,” Theor. Math. Phys. 120, 1220–1244 (1999).

    Article  Google Scholar 

  133. A. Illarionov, A. Kotikov, S. Parzycki, and D. Peshekhonov, “New type of parametrization for parton distributions,” Phys. Rev. D 83, 034024 (2011).

    Article  ADS  Google Scholar 

  134. A. Kotikov, B. Shaikhatdenov, and P. Zhang, “Antishadowing in the rescaling model at x ~ 0.1,” Phys. Part. Nucl. Lett. 16, 311—314 (2019).

    Article  Google Scholar 

  135. A. Kotikov, B. Shaikhatdenov, and P. Zhang, “Application of the rescaling model at small Bjorken x values,” Phys. Rev. D 96, 114002 (2017).

    Article  ADS  Google Scholar 

  136. S. Brodsky, J. Ellis, E. Gardi, M. Karliner, and M. Samuel, “Pade approximants, optimal renormalization scales, and momentum flow in Feynman diagrams,” Phys. Rev. D 56, 6980–6992 (1997).

    Article  ADS  Google Scholar 

  137. V. Matveev, R. Muradian, and A. Tavhelidze, “Automodelism in the large angle elastic scattering and structure of hadrons,” Lett. Nuovo Cimento 7, 719 (1973).

    Article  Google Scholar 

  138. S. Brodsky and R. Glennys, “Scaling laws at large transverse momentum,” Phys. Rev. Lett. 31, 1153 (1973).

    Article  ADS  Google Scholar 

  139. P. Jimenez-Delgado and E. Reya, “Delineating parton distributions and the strong coupling,” Phys. Rev. D 89, 074049 (2014).

    Article  ADS  Google Scholar 

  140. S. Alekhin, J. Blümlein, S. Moch, and R. Placakyte, “Parton distribution functions, αs, and heavy-quark masses for LHC Run II,” Phys. Rev. D 96, 014011 (2017).

    Article  ADS  Google Scholar 

  141. A. V. Kotikov, V. G. Krivokhizhin, and B. G. Shaikhat-denov, “Gottfried sum rule in QCD nonsinglet analysis of DIS fixed-target data,” Phys. At. Nucl. 81, 244–252 (2018).

    Article  Google Scholar 

  142. S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, et al., “Inclusive b-jet production in pp collisions at \(\sqrt s \) = 7 TeV,” J. High Energy Phys. 2012, 084 (2012).

  143. G. Aad, B. Abbott, J. Abdallah, A. Abdelalim, A. Abdesselam, O. Abdinov, B. Abi, M. Abolins, H. Abramowicz, et al., “Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at \(\sqrt s \) = 7 TeV with the ATLAS detector,” Eur. Phys. J. C 71, 1846 (2011).

    Article  ADS  Google Scholar 

  144. H. Jung, M. Kraemer, A. Lipatov, and N. Zotov, “Heavy flavour production at Tevatron and parton shower effects,” J. High Energy Phys. 2011, 085 (2011).

  145. H. Jung, M. Kraemer, A. Lipatov, and N. Zotov, “Investigation of beauty production and parton shower effects at the LHC,” Phys. Rev. D 85, 034035 (2012).

    Article  ADS  Google Scholar 

  146. L. Lipatov, “Gauge invariant effective action for high energy processes in QCD,” Nucl. Phys. B 452, 369–397 (1995).

    Article  ADS  Google Scholar 

  147. L. Lipatov and M. Vyazovsky, “Quasi-multi-Regge processes with a quark exchange in the t-channel,” Nucl. Phys. B 597, 399–409 (2001).

    Article  ADS  Google Scholar 

  148. L. Lipatov, “Small-x physics in perturbative QCD,” Phys. Rep. 286, 131–198 (1997).

    Article  ADS  Google Scholar 

  149. V. Kim and G. Pivovarov, “Effective Regge QCD,” Phys. Rev. Lett. 79, 809–812 (1997).

    Article  ADS  Google Scholar 

  150. L. Lipatov, “Reggeization of vector meson and vacuum singularity in non-Abelian gauge theories,” Yad. Fiz. 23, 642–656 (1976).

    Google Scholar 

  151. V. Fadin and V. Sherman, “Reggeization of the fermion in non-Abelian gauge theories,” JETP Lett. 23, 599 (1976).

    Google Scholar 

  152. V. Fadin and V. Sherman, “Processes with fermion exchange in nonabelian gauge theories,” Sov. Phys. JETP 45, 861 (1977).

    Google Scholar 

  153. E. Antonov, I. Cherednikov, E. Kuraev, and L. Lipatov, “Feynman rules for effective Regge action,” Nucl. Phys. B 721, 111–135 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  154. M. Nefedov and V. Saleev, “Diphoton production at the Tevatron and the LHC in the NLO approximation of the parton Reggeization approach,” Phys. Rev. D 92, 094033 (2015).

    Article  ADS  Google Scholar 

  155. V. Borodulin, R. Rogalyov, and S. Slabospitskii, “CORE 3.1 (Compendium of RElations, Version 3.1),” arXiv:1702.08246 (2017).

  156. S. Baranov and A. Szczurek, “Inclusive production of J/ψ meson in proton-proton collisions at BNL RHIC,” Phys. Rev. D 77, 054016 (2008).

    Article  ADS  Google Scholar 

  157. A. van Hameren and M. Serino, “BCFW recursion for TMD parton scattering,” J. High Energy Phys. 2015, 010 (2015).

  158. A. van Hameren, “KaTie: For parton-level event generation with k T-dependent initial states,” Comput. Phys. Commun. 224, 371–380 (2018).

    Article  ADS  Google Scholar 

  159. E. Byckling and K. Kajantie, Kinematics of Elementary Particles (Wiley and Sons, London, 1973; Mir, Moscow, 1975).

  160. T. Sjöstrand, S. Ask, J. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. Rasmussen, and P. Skands, “An introduction to Pythia 8.2,” Comput. Phys. Commun. 191, 159–177 (2015).

    Article  ADS  Google Scholar 

  161. J. Campbell and R. Ellis, “Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders,” Phys. Rev. D 65, 113007 (2002).

    Article  ADS  Google Scholar 

  162. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations,” J. High Energy Phys. 2014, 079 (2014).

  163. T. Gleisberg, S. Höche, F. Krauss, M. Schönherr, S. Schumann, F. Siegert, and J. Winter, “Event generation with Sherpa 1.1,” J. High Energy Phys. 2009, 007 (2009).

  164. S. Catani, F. Krauss, B. Webber, and R. Kuhn, “QCD matrix elements + parton showers,” J. High Energy Phys. 2001, 063 (2001).

  165. J. Alwall, S. Höche, F. Krauss, N. Lavesson, L. Lönnblad, F. Maltoni, M. Mangano, M. Moretti, C. Papadopoulos, F. Piccinini, et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions,” Eur. Phys. J. C 53, 473—500 (2007).

    Article  ADS  Google Scholar 

  166. R. Frederix and S. Frixione, “Merging meets matching in MCNLO,” J. High Energy Phys. 2012, 061 (2012).

  167. K. Hamilton, P. Nason, and G. Zanderighi, “MINLO: Multi-scale improved NLO,” J. High Energy Phys. 2012, 155 (2012).

    Article  ADS  Google Scholar 

  168. J. Alwall, A. Ballestrero, P. Bartalini, S. Belov, E. Boos, A. Buckley, J. Butterworth, L. Dudko, S. Frixione, L. Garren, et al., “A standard format for Les Houches event files,” Comput. Phys. Commun. 176, 300—304 (2007).

    Article  ADS  Google Scholar 

  169. S. Acharya et al. (ALICE Collab.), “Inclusive J/ψ production at midrapidity in pp collisions at \(\sqrt s \) = 13 TeV,” arXiv:2108.01906 (2021).

  170. S. Acharya et al. (ALICE Collab.), “Prompt and non-prompt J/ψ production cross sections at midrapidity in proton-proton collisions at \(\sqrt s \) = 5.02 and 13 TeV,” arXiv:2108.02523 (2021).

  171. P. Nadolsky, H. L. Lai, Q. H. Cao, J. Huston, J. Pumplin, D. Stump, W. K. Tung, and C. P. Yuan, “Implications of CTEQ global analysis for collider observables”," Phys. Rev. D 78, 013004 (2008).

    Article  ADS  Google Scholar 

  172. G. Lepage, “A new algorithm for adaptive multidimensional integration,” J. Comput. Phys. 27, 192–203 (1978).

    Article  ADS  Google Scholar 

  173. A. Lipatov, M. Malyshev, and H. Jung, “TMD parton shower effects in associated γ+ jet production at the LHC,” Phys. Rev. D 100, 034028 (2019).

    Article  ADS  Google Scholar 

  174. A. Lipatov and M. Malyshev, “Associated Higgs boson + jets production at the LHC and Catani–Ciafaloni–Fiorani–Marchesini gluon dynamics in a proton,” Phys. Rev. D 103, 094021 (2021).

    Article  ADS  Google Scholar 

  175. N. Y. Chernikova and A. V. Kotikov, “Gluon density from the Berger–Block–Tan form of the structure function F 2,” JETP Lett. 105, 223–226 (2017).

    Article  ADS  Google Scholar 

  176. A. Illarionov, A. Kotikov, and G. Parente, “Small x behavior of parton distributions: A study of higher twist effects,” Phys. Part. Nucl. 39, 307–347 (2008).

    Article  Google Scholar 

  177. A. Cooper-Sarkar, G. Ingelman, K. Long, R. Roberts, and D. Saxon, “Measurement of the longitudinal structure function and the small x gluon density of the proton,” Z. Phys. C 39, 281–290 1988.

    Article  ADS  Google Scholar 

  178. K. Prytz, “Approximate determination of the gluon density at low-x from the F 2 scaling violations,” Phys. Lett. B 311, 286–290 (1993).

    Article  ADS  Google Scholar 

  179. K. Prytz, “An approximate next-to-leading order relation between the low-x F 2 scaling violations and the gluon density,” Phys. Lett. B 332, 393–397 (1994).

    Article  ADS  Google Scholar 

  180. A. Kotikov, A. Lipatov, G. Parente, and N. Zotov, “The contribution of off- shell gluons to the structure functions \(F_{2}^{c}\) and \(F_{{\text{L}}}^{c}\) and the unintegrated gluon distributions,” Eur. Phys. J. C 26, 51–66 (2002).

    Article  ADS  Google Scholar 

  181. A. Kotikov, A. Lipatov, and N. Zotov, “The contribution of off-shell gluons to the longitudinal structure function F L,” Eur. Phys. J. C 27, 219–228 (2003).

    Article  ADS  Google Scholar 

  182. A. Kotikov, A. Lipatov, and P. Zhang, “Transverse momentum dependent parton densities in processes with heavy quark generations” Phys. Rev. D 104, 054042 (2021).

    Article  ADS  Google Scholar 

  183. H. Abramowicz et al. (H1, ZEUS Collab.), “Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA, ” Eur. Phys. J. C 78, 473 (2018).

    Article  ADS  Google Scholar 

  184. H. Abramowicz, I. Abt, L. Adamczyk, M. Adamus, R. Aggarwal, S. Antonelli, O. Arslan, V. Aushev, Yu. Aushev, et al., “Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass,” J. High Energy Phys. 2014, 127 (2014).

    Article  Google Scholar 

  185. F. Aaron, C. Alexa, V. Andreev, S. Backovic, A. Baghdasaryan, S. Baghdasaryan, E. Barrelet, W. Bartel, K. Begzsuren, et al., “Measurement of D*± meson production and determination of \(F_{2}^{{c\bar {c}}}\) at low Q 2 in deep-inelastic scattering at HERA,” Eur. Phys. J. C 71, 1769 (2011).

    Article  ADS  Google Scholar 

  186. F. Aaron, M. Aldaya Martin, C. Alexa, K. Alimujiang, V. Andreev, B. Antunovic, A. Asmone, S. Backovic, A. Baghdasaryan, et al., “Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA,” Eur. Phys. J. C 65, 89–109 (2009).

    Article  ADS  Google Scholar 

  187. S. Baranov, A. Lipatov, and N. Zotov, “Production of heavy quarks on protons within the semihard QCD approach,” Phys. At. Nucl. 67, 837–845 (2004).

    Article  Google Scholar 

  188. N. Zotov, A. Lipatov, and V. Saleev, “Heavy-quark production in \(p\bar {p}\) collisions and unintegrated gluon distributions,” Phys. At. Nucl. 66, 755–763 (2003).

    Article  Google Scholar 

  189. A. Lipatov, L. Lönnblad, and N. Zotov, “Study of the linked dipole chain model in heavy quark production at the Tevatron,” J. High Energy Phys. 2004, 010 (2004).

  190. S. Baranov, H. Jung, A. Lipatov, and M. Malyshev, “Testing the parton evolution with the use of two-body final states,” Eur. Phys. J. C 77, 2 (2016).

    Article  ADS  Google Scholar 

  191. S. Baranov, A. Lipatov, and N. Zotov, “Prompt photon hadroproduction at high energies in off-shell gluon-gluon fusion,” Phys. Rev. D 77, 074024 (2008).

    Article  ADS  Google Scholar 

  192. S. Baranov, A. Lipatov, and N. Zotov, “Production of electroweak gauge bosons in off-shell gluon-gluon fusion,” Phys. Rev. D 78, 014025 (2008).

    Article  ADS  Google Scholar 

  193. S. Baranov, H. Jung, A. Lipatov, and M. Malyshev, “Associated production of Z bosons and b-jets at the LHC in the combined k T + collinear QCD factorization approach,” Eur. Phys. J. C 77, 772 (2017).

    Article  ADS  Google Scholar 

  194. V. Bednyakov, S. Brodsky, A. Lipatov, G. Lykasov, M. Malyshev, J. Smiesko, and S. Tokar, “Constraints on the intrinsic charm content of the proton from recent ATLAS data,” Eur. Phys. J. C 79, 92 (2019).

    Article  ADS  Google Scholar 

  195. A. Lipatov, G. Lykasov, M. Malyshev, A. Prokhorov, and S. Turchikhin, “Hard production of a Z boson plus heavy flavor jets at LHC and the intrinsic charm content of a proton,” Phys. Rev. D 97, 114019 (2018).

    Article  ADS  Google Scholar 

  196. R. Prange, “Dispersion relations for Compton scattering,” Phys. Rev. 110, 240—252 (1958).

    Article  ADS  Google Scholar 

  197. S. Baranov and V. Slad, “Production of triply charmed Ωccc baryons in e + e annihilation,” Phys. At. Nucl. 67, 808–814 (2004).

    Article  Google Scholar 

  198. S. Baranov, “Production of doubly flavored baryons in pp, ep, and γγ collisions,” Phys. Rev. D 54, 3228—3236 (1996).

    Article  ADS  Google Scholar 

  199. S. Baranov, “Semiperturbative and nonperturbative production of hadrons with two heavy flavors,” Phys. Rev. D 56, 3046—3056 (1997).

    Article  ADS  Google Scholar 

  200. S. Baranov and V. Slad, “Production of Ωscb baryons in electron-positron collisions,” Phys. At. Nucl. 66, 1730–1736 (2003).

    Article  Google Scholar 

  201. S. Baranov and V. Slad, “Some features of the production of heavy-quark-containing baryons in electron-positron collisions,” Phys. At. Nucl. 68, 1183–1189 (2005).

    Article  Google Scholar 

  202. K. Koller, T. Walsh, and P. Zerwas, “Testing QCD: Direct photons in e + e collisions,” Z. Phys. C 2, 197–203 (1979).

    Article  ADS  Google Scholar 

  203. E. Laermann, T. Walsh, I. Schmitt, and P. Zerwas, “Direct photons in e + e annihilation,” Nucl. Phys. B 207, 205–232 (1982).

    Article  ADS  Google Scholar 

  204. M. Aaboud et al. (ATLAS Collab.), “Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at \(\sqrt s \) = 8 TeV using the ATLAS detector,” Phys. Lett. B 776, 295–317 (2018).

    Article  ADS  Google Scholar 

  205. S. Catani, M. Fontannaz, J. P. Guillet, and E. Pilon, “Cross section of isolated prompt photons in hadron-hadron collisions,” J. High Energy Phys. 2002, 028 (2002).

  206. P. Aurenche, J. P. Guillet, E. Pilon, M. Werlen, and M. Fontannaz, “Recent critical study of photon production in hadronic collisions,” Phys. Rev. D 73, 094007 (2006).

    Article  ADS  Google Scholar 

  207. S. Baranov, A. Lipatov, and N. Zotov, “Associated production of prompt photons and heavy quarks in off-shell gluon-gluon fusion,” Eur. Phys. J. C 56, 371 (2008).

    Article  ADS  Google Scholar 

  208. A. Lipatov, M. Malyshev, and N. Zotov, “Prompt photon and associated heavy quark production at hadron colliders with k T-factorization,” J. High Energy Phys. 2012, 104 (2012).

    Article  ADS  Google Scholar 

  209. A. Lipatov, M. Malyshev, and N. Zotov, “Extended study of prompt photon photoproduction at HERA with k T-factorization,” Phys. Rev. D 88, 074001 (2013).

    Article  ADS  Google Scholar 

  210. A. Lipatov and M. Malyshev, “Reconsideration of the inclusive prompt photon production at the LHC with k T-factorization,” Phys. Rev. D 94, 034020 (2016).

    Article  ADS  Google Scholar 

  211. A. Lipatov, “Isolated prompt photon pair production at hadron colliders with k T-factorization,” J. High Energy Phys. 2013, 009 (2013).

  212. S. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, “The intrinsic charm of the proton,” Phys. Lett. B 93, 451—455 (1980).

    Article  ADS  Google Scholar 

  213. S. Brodsky, C. Peterson, and N. Sakai, “Intrinsic heavy-quark states,” Phys. Rev. D 23, 2745–2757 (1981).

    Article  ADS  Google Scholar 

  214. B. Harris, J. Smith and R. Vogt, “Reanalysis of the EMC charm production data with extrinsic and intrinsic charm at NLO,” Nucl. Phys. B 461, 181–196 (1996).

    Article  ADS  Google Scholar 

  215. M. Franz, M. Polyakov, and K. Goeke, “Heavy quark mass expansion and intrinsic charm in light hadrons,” Phys. Rev. D 62, 074024 (2000).

    Article  ADS  Google Scholar 

  216. S. J. Brodsky, G. I. Lykasov, A. V. Lipatov, and J. Smiesko, “Novel heavy-quark physics phenomena,” Prog. Part. Nucl. Phys. B 114, 103802 (2020).

    Article  Google Scholar 

  217. G. Aad et al. (ATLAS Collab.), “Measurement of differential production cross-sections for a Z boson in association with b-jets in 7 TeV proton-proton collisions with the ATLAS detector,” J. High Energy Phys. 2014, 141 (2014).

    Article  ADS  Google Scholar 

  218. S. Chatrchyan et al. (CMS Collab.), “Measurement of the cross section and angular correlations for associated production of a Z boson with b hadrons in pp collisions at \(\sqrt s \) = 7 TeV,” J. High Energy Phys. 2013, 039 (2013).

  219. C. Peterson, D. Schlatter, I. Schmitt, and P. Zerwas, “Scaling violations in inclusive e + e annihilation spectra,” Phys. Rev. D 27, 105–111 (1983).

    Article  ADS  Google Scholar 

  220. B. Blok, Yu. Dokshitzer, L. Frankfurt, and M. Strikman, “Four-jet production at LHC and Tevatron in QCD,” Phys. Rev. D 83, 071501 (2011).

    Article  ADS  Google Scholar 

  221. B. Blok, Yu. Dokshitzer, L. Frankfurt, and M. Strikman, “Perturbative QCD correlations in multi-parton collisions,” Eur. Phys. J. C 74, 2926 (2014).

    Article  ADS  Google Scholar 

  222. M. Diehl, D. Ostermeier, and A. Schäfer, “Elements of a theory for multiparton interactions in QCD,” J. High Energy Phys. 2012, 089 (2012).

  223. M. Ryskin and A. Snigirev, “Fresh look at double parton scattering,” Phys. Rev. D 83, 114047 (2011).

    Article  ADS  Google Scholar 

  224. A. Snigirev, “Asymptotic behavior of double parton distribution functions,” Phys. Rev. D 83, 034028 (2011).

    Article  ADS  Google Scholar 

  225. M. Cacciari, G. Salam, and G. Soyez, “FastJet user manual,” Eur. Phys. J. C 72, 1896 (2012).

    Article  ADS  Google Scholar 

  226. S. Baranov and N. Zotov, “BFKL gluon dynamics and resolved photon processes in D* and dijet associated photoproduction at HERA,” Phys. Lett. B 491, 111—116 (2000).

    Article  ADS  Google Scholar 

  227. S. Chatrchyan et al. (CMS Collab.), “Measurement of the triple-differential cross section for photon + jets production in proton-proton collisions at \(\sqrt s \) = 7 TeV,” J. High Energy Phys. 2014, 009 (2014).

  228. G. Aad et al. (ATLAS Collab.), “Measurement of the production cross section of an isolated photon associated with jets in proton-proton collisions at \(\sqrt s \) = 7 TeV with the ATLAS detector,” Phys. Rev. D 85, 092014 (2012).

    Article  ADS  Google Scholar 

  229. G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. Abdelalim, O. Abdinov, R. Aben, B. Abi, M. Abolins, et al., “Dynamics of isolated-photon plus jet production in pp collisions at \(\sqrt s \) = 7 TeV with the ATLAS detector,” Nucl. Phys. B 875, 483—535 (2013).

    Article  ADS  Google Scholar 

  230. A. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, et al., “Measurement of differential cross sections for inclusive isolated-photon and photon+jet production in proton-proton collisions at \(\sqrt s \) = 13 TeV,” Eur. Phys. J. C 79, 20 (2019).

    Article  ADS  Google Scholar 

  231. M. Aaboud, G. Aad, B. Abbott, J. Abdallah, O. Abdinov, B. Abeloos, O. AbouZeid, N. Abraham, H. Abramowicz, H. Abreu, et al., “High-E T isolated-photon plus jets production in pp collisions at \(\sqrt s \) = 8 TeV with the ATLAS detector,” Nucl. Phys. B 918, 257—316 (2017).

    Article  ADS  Google Scholar 

  232. M. Aaboud, G. Aad, B. Abbott, O. Abdinov, B. Abeloos, S. Abidi, O. AbouZeid, N. Abraham, H. Abramowicz, H. Abreu, et al., “Measurement of the cross section for isolated-photon plus jet production in pp collisions at \(\sqrt s \) = 13 TeV using the ATLAS detector,” Phys. Lett. B 780, 578—602 (2018).

    Article  ADS  Google Scholar 

  233. A. Lipatov and N. Zotov, “Prompt photon photoproduction at DESY HERA in the k T -factorization approach,” Phys. Rev. D 72, 054002 (2005).

    Article  ADS  Google Scholar 

  234. A. Lipatov and N. Zotov, “Transverse momentum dependent parton densities in associated real and virtual photon and jet production at the LHC,” Phys. Rev. D 90, 094005 (2014).

    Article  ADS  Google Scholar 

  235. S. Chatrchyan et al. (CMS Collab.), “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30—61 (2012).

    Article  ADS  Google Scholar 

  236. G. Aad et al. (ATLAS Collab.), “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1—29 (2012).

    Article  ADS  Google Scholar 

  237. M. Ilyushin, P. Mandrik, and S. Slabospitskii, “Constraints on the Higgs boson anomalous FCNC interactions with light quarks,” Nucl. Phys. B 952, 114921 (2020).

    Article  Google Scholar 

  238. F. Wilczek, “Decays of heavy vector mesons into Higgs particles,” Phys. Rev. Lett. 39, 1304—1306 (1977).

    Article  ADS  Google Scholar 

  239. H. Georgi, S. Glashow, M. Machacek, and D. Nanopoulos, “Higgs bosons from two-gluon annihilation in proton-proton collisions,” Phys. Rev. Lett. 40, 692—694 (1978).

    Article  ADS  Google Scholar 

  240. J. Ellis, M. Gaillard, D. Nanopoulos, and C. Sachrajda, “Is the mass of the Higgs boson about 10 GeV?,” Phys. Lett. B 83, 339—344 (1979).

    Article  ADS  Google Scholar 

  241. T. Rizzo, “Gluon final states in Higgs-boson decay,” Phys. Rev. D 22, 178–183 (1980).

    Article  ADS  Google Scholar 

  242. D. Graudenz, M. Spira, and P. Zerwas, “QCD corrections to Higgs-boson production at proton-proton colliders,” Phys. Rev. Lett. 70, 1372–1375 (1993).

    Article  ADS  Google Scholar 

  243. M. Spira, A. Djouadi, D. Graudenz, and P. Zerwas, “Higgs boson production at the LHC,” Nucl. Phys. B 453, 17—82 (1995).

    Article  ADS  Google Scholar 

  244. D. De Florianet al. (LHC Higgs Cross Section Working Group Collab.), “Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, 2/2017, 10 (2016). arXiv:1610.07922.

  245. J. Ellis, M. Gaillard, and D. Nanopoulos, “A phenomenological profile of the Higgs boson,” Nucl. Phys. B 106, 292–340 (1976).

    Article  ADS  Google Scholar 

  246. A. Vainstein, M. Voloshin, V. Zakharov, and M. Shifman, “Low-energy theorems for the interaction of Higgs boson with photons,” Yad. Fiz. 30, 1368–1378 (1979).

    Google Scholar 

  247. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt, and D. Zeppenfeld, “Gluon fusion contributions to H + 2 jet production,” Nucl. Phys. B 616, 367—399 (2001).

    Article  ADS  Google Scholar 

  248. V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt, and D. Zeppenfeld, “Kinematical limits on Higgs boson production via gluon fusion in association with jets,” Phys. Rev. D 67, 073003 (2003).

    Article  ADS  Google Scholar 

  249. C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, and B. Mistlberger, “High precision determination of the gluon fusion Higgs boson cross-section at the LHC,” J. High Energy Phys. 05, 058 (2016).

  250. S. Dawson, “Radiative corrections to Higgs boson production,” Nucl. Phys. B 359, 283–300 (1991).

    Article  ADS  Google Scholar 

  251. A. Djouadi, M. Spira, and P. Zerwas, “Production of Higgs bosons in proton colliders. QCD corrections,” Phys. Lett. B 264, 440–446 (1991).

    Article  ADS  Google Scholar 

  252. E. Boos, L. Dudko, and S. Slabospitskii, “Top quark: Results and prospects,” Phys. Part. Nucl. 50, 231–258 (2019).

    Article  Google Scholar 

  253. A. Lipatov and N. Zotov, “Higgs boson production at hadron colliders in the k T-factorization approach,” Eur. Phys. J. C 44, 559–566 (2005).

    Article  ADS  Google Scholar 

  254. A. Lipatov, M. Malyshev, and N. Zotov, “Phenomenology of k T-factorization for inclusive Higgs boson production at LHC,” Phys. Lett. B 735, 79–83 (2014).

    Article  ADS  Google Scholar 

  255. N. Abdulov, A. Lipatov, and M. Malyshev, “Inclusive Higgs boson production at the LHC in the k T-factorization approach,” Phys. Rev. D 97, 054017 (2018).

    Article  ADS  Google Scholar 

  256. D. de Florian, G. Ferrera, M. Grazzini, and D. Tommasini, “Higgs Boson production at the LHC: Transverse momentum resummation effects in the H → γγ, HWWlνlν and HZZ → 4l decay modes,” J. High Energy Phys. 2012, 132 (2012).

    Article  Google Scholar 

  257. K. Hamilton, P. Nason, E. Re, and G. Zanderighi, “NNLOPS simulation of Higgs boson production,” J. High Energy Phys. 2013, 222 (2013).

    Article  ADS  Google Scholar 

  258. A. Sirunyan et al. (CMS Collab.), “Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at √s = 13 TeV,” J. High Energy Phys. 2019, 183 (2019).

    Article  Google Scholar 

  259. M. Aaboud et al. (ATLAS Collab.), “Measurements of Higgs boson properties in the diphoton decay channel with 36 fb-1 of pp collision data at \(\sqrt s \) = 13 TeV with the ATLAS detector,” Phys. Rev. D 98, 052005 (2018).

    Article  ADS  Google Scholar 

  260. G. Aad et al. (ATLAS Collab.), “Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4l decay channel at \(\sqrt s \) = 13 TeV,” arXiv: 2004.03969 (2020).

  261. A. Sirunyan et al. (CMS Collab.), “Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \(\sqrt s \) = 13 TeV,” J. High Energy Phys. 2017, 047 (2017).

  262. M. Hentschinski, “Transverse momentum dependent gluon distribution within high energy factorization at next-to-leading order,” Phys. Rev. D 104, 054014 (2021).

    Article  ADS  Google Scholar 

  263. A. Karpishkov, M. Nefedov, and V. Saleev, “B \(\bar {B}\) angular correlations at the LHC in the parton Reggeization approach merged with higher-order matrix elements,” Phys. Rev. D 96, 096019 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Kotikov, G.I. Lykasov, and H. Jung for numerous discussions and assistance in the work.

Funding

This work was supported by ongoing institutional funding. No additional grants to conduct or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Lipatov, S. P. Baranov or M. A. Malyshev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Samokhina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipatov, A.V., Baranov, S.P. & Malyshev, M.A. Semihard QCD Processes beyond the Collinear Approximation. Phys. Part. Nuclei 55, 256–307 (2024). https://doi.org/10.1134/S1063779624020047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779624020047

Navigation