Skip to main content
Log in

Identifying Second-Gradient Continuum Models in Particle-Based Materials with Pairwise Interactions Using Acoustic Tensor Methodology

  • Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

This paper discusses wave propagation in unbounded particle-based materials described by a second-gradient continuum model, recently introduced by the authors, to provide an identification technique. The term particle-based materials denotes materials modeled as assemblies of particles, disregarding typical granular material properties such as contact topology, granulometry, grain sizes, and shapes. This work introduces a center-symmetric second-gradient continuum resulting from pairwise interactions. The corresponding Euler-Lagrange equations (equilibrium equations) are derived using the least action principle. This approach unveils non-classical interactions within subdomains. A novel, symmetric, and positive-definite acoustic tensor is constructed, allowing for an exploration of wave propagation through perturbation techniques. The properties of this acoustic tensor enable the extension of an identification procedure from Cauchy (classical) elasticity to the proposed second-gradient continuum model. Potential applications concern polymers, composite materials, and liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. La Valle, G., Soize, C.: A higher-order nonlocal elasticity continuum model for deterministic and stochastic particle-based materials. Z. Angew. Math. Phys. 75, 49 (2024)

    Article  MathSciNet  Google Scholar 

  2. La Valle, G., Soize, C.: Stochastic second-gradient continuum theory for particle-based materials. Part II. Z. Angew. Math. Phys., Accepted (2024)

  3. Cong, H., Yu, B., Tang, J., Li, Z., Liu, X.: Current status and future developments in preparation and application of colloidal crystals. Chem. Soc. Rev. 42, 7774–7800 (2013)

    Article  Google Scholar 

  4. Wang, S., et al.: The emergence of valency in colloidal crystals through electron equivalents. Nat. Mater. 21, 580–587 (2022)

    Article  Google Scholar 

  5. Li, X., Lu, H., Peng, Z.: Continuum-and particle-based modeling of human red blood cells. In: Handbook of Materials Modeling Applications: Current and Emerging Materials (2018)

    Google Scholar 

  6. Wang, Y., Jenkins, I.C., McGinley, J.T., Sinno, T., Crocker, J.C.: Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 14173 (2017)

    Article  Google Scholar 

  7. Zhu, C., et al.: Colloidal materials for 3d printing. Annu. Rev. Chem. Biomol. Eng. 10, 17–42 (2019)

    Article  Google Scholar 

  8. Liu, K., et al.: 3d printing colloidal crystal microstructures via sacrificial-scaffold-mediated two-photon lithography. Nat. Commun. 13, 4563 (2022)

    Article  Google Scholar 

  9. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)

    Book  Google Scholar 

  10. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2013)

    Book  Google Scholar 

  11. Altenbach, H., Eremeyev, V.A.: Generalized Continua from the Theory to Engineering Applications. Springer, Vienna (2013)

    Book  Google Scholar 

  12. Eugster, S., Steigmann, D., et al.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Complex Syst. 7, 75–98 (2019)

    Article  MathSciNet  Google Scholar 

  13. Shirani, M., Steigmann, D.: Cosserat elasticity of lattice solids. J. Elast., 1–16 (2021)

  14. Steigmann, D.J., Bîrsan, M., Shirani, M.: Thin shells reinforced by fibers with intrinsic flexural and torsional elasticity. Int. J. Solids Struct. 285, 112550 (2023)

    Article  Google Scholar 

  15. Eringen, A.C.: Mechanics of micromorphic continua. In: Kröner, E. (ed.) Mechanics of Generalized Continua, pp. 18–35. Springer, Berlin (1968)

    Chapter  Google Scholar 

  16. Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  Google Scholar 

  17. Hütter, G.: An extended Coleman–Noll procedure for generalized continuum theories. Contin. Mech. Thermodyn. 28, 1935–1941 (2016)

    Article  MathSciNet  Google Scholar 

  18. Forest, S.: Continuum thermomechanics of nonlinear micromorphic, strain and stress gradient media. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 378, 20190169 (2020)

    Article  MathSciNet  Google Scholar 

  19. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)

    Article  Google Scholar 

  20. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  Google Scholar 

  21. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    Google Scholar 

  22. Dell’Isola, F., Ruta, G.C., Batra, R.C.: A second-order solution of Saint-Venant’s problem for an elastic pretwisted bar using Signorini’s perturbation method. J. Elast. 49, 113–127 (1997)

    Article  MathSciNet  Google Scholar 

  23. Dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118, 113–125 (2015)

    Article  MathSciNet  Google Scholar 

  24. Eremeyev, V.A., Dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 175–196 (2018)

    Article  MathSciNet  Google Scholar 

  25. Germain, P.: The method of virtual power in the mechanics of continuous media, I: second-gradient theory. Math. Mech. Complex Syst. 8, 153–190 (2020)

    Article  MathSciNet  Google Scholar 

  26. Eugster, S.R., Barchiesi, E.: A second gradient continuum formulation for bi-pantographic fabrics. PAMM 21, e202100192 (2021)

    Article  Google Scholar 

  27. Eugster, S.R., Dell’Isola, F., Fedele, R., Seppecher, P.: Piola transformations in second-gradient continua. Mech. Res. Commun. 120, 103836 (2022)

    Article  Google Scholar 

  28. dell’Isola, F., Eugster, S.R., Fedele, R., Seppecher, P.: Second-gradient continua: from Lagrangian to Eulerian and back. Math. Mech. Solids 27, 2715–2750 (2022)

    Article  MathSciNet  Google Scholar 

  29. Diana, V.: Anisotropic continuum-molecular models: a unified framework based on pair potentials for elasticity, fracture and diffusion-type problems. Arch. Comput. Methods Eng. 30, 1305–1344 (2023)

    Article  MathSciNet  Google Scholar 

  30. Sperling, S., Hoefnagels, J., van den Broek, K., Geers, M.: A continuum particle model for micro-scratch simulations of crystalline silicon. J. Mech. Phys. Solids 182, 105469 (2024)

    Article  MathSciNet  Google Scholar 

  31. Maugin, G.A.: Generalized Continuum Mechanics: What do We Mean by That? pp. 3–13. Springer, New York (2010)

    Google Scholar 

  32. Misra, A., Placidi, L., dell’Isola, F., Barchiesi, E.: Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics. Z. Angew. Math. Phys. 72, 157 (2021)

    Article  MathSciNet  Google Scholar 

  33. Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49, 2500–2514 (2012)

    Article  Google Scholar 

  34. Placidi, L., Barchiesi, E., Misra, A., Timofeev, D.: Micromechanics-based elasto-plastic–damage energy formulation for strain gradient solids with granular microstructure. Contin. Mech. Thermodyn. 33, 2213–2241 (2021)

    Article  MathSciNet  Google Scholar 

  35. Forest, S.: Mechanics of generalized continua: construction by homogenizaton. J. Phys. IV 8, Pr4-39–Pr4-48 (1998)

    Google Scholar 

  36. Forest, S.: Homogenization methods and mechanics of generalized continua – part 2. Theor. Appl. Mech. 8, 113–144 (2002)

    Article  Google Scholar 

  37. Jänicke, R., Diebels, S.: A numerical homogenisation strategy for micromorphic continua. Proc. Appl. Math. Mech. 9, 437–438 (2009)

    Article  Google Scholar 

  38. Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    Article  MathSciNet  Google Scholar 

  39. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A, Math. Phys. Eng. Sci. 472, 20150790 (2016)

    Google Scholar 

  40. Yvonnet, J., Auffray, N., Monchiet, V.: Computational second-order homogenization of materials with effective anisotropic strain-gradient behavior. Int. J. Solids Struct. 191, 434–448 (2020)

    Article  Google Scholar 

  41. Abdoul-Anziz, H., Seppecher, P., Bellis, C.: Homogenization of frame lattices leading to second gradient models coupling classical strain and strain-gradient terms. Math. Mech. Solids 24, 3976–3999 (2019)

    Article  MathSciNet  Google Scholar 

  42. Forest, S., Trinh, D.K.: Generalized continua and non-homogeneous boundary conditions in homogenisation methods. Z. Angew. Math. Mech. 91, 90–109 (2011)

    Article  Google Scholar 

  43. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, Bristol (1970)

    Google Scholar 

  44. Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    Google Scholar 

  45. Javili, A., McBride, A.T., Steinmann, P.: Continuum-kinematics-inspired peridynamics. Mechanical problems. J. Mech. Phys. Solids 131, 125–146 (2019)

    Article  MathSciNet  Google Scholar 

  46. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    Google Scholar 

  47. Krée, P., Soize, C.: Mathematics of Random Phenomena. Reidel, Dordrecht (1986). (First published by Bordas in 1983 and also published by Springer Science & Business Media in 2012)

    Google Scholar 

  48. Guikhman, I.I., Skorokhod, A.: Introduction à la Théorie des Processus Aléatoires. Mir, Moscow (1980)

    Google Scholar 

  49. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  Google Scholar 

  50. Soize, C.: Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput. Methods Appl. Mech. Eng. 195, 26–64 (2006)

    Article  MathSciNet  Google Scholar 

  51. Soize, C.: Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices. Int. J. Numer. Methods Eng. 76, 1583–1611 (2008)

    Article  MathSciNet  Google Scholar 

  52. Maugin, G.A.: Nonlocal theories or gradient-type theories: a matter of convenience? Arch. Mech. 3, 15–26 (1979)

    MathSciNet  Google Scholar 

  53. Aristégui, C., Baste, S.: Optimal recovery of the elasticity tensor of general anisotropic materials from ultrasonic velocity data. J. Acoust. Soc. Am. 101, 813–833 (1997)

    Article  Google Scholar 

  54. Noll, W.: The Foundations of Mechanics and Thermodynamics: Selected Papers. Springer, Berlin (2012)

    Google Scholar 

  55. dell’Isola, F., Misra, A.: Principle of virtual work as foundational framework for metamaterial discovery and rational design. C. R., Méc. (2023). Online first

  56. Truesdell, C.: Linear Theories of Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells, vol. 2. Springer, Berlin (2013)

    Google Scholar 

Download references

Acknowledgements

The first author of the paper, who is currently a scientific visitor, would like to express gratitude to the Laboratoire Modélisation et Simulation Multi Echelle (MSME) at Université Gustave Eiffel.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

G.L.V developed the theory, wrote, and reviewed the manuscript, C.S. developed the theory, wrote, and reviewed the manuscript.

Corresponding author

Correspondence to Gabriele La Valle.

Ethics declarations

Ethical approval

Not applicable.

Consent for publication

The authors give their consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Hereafter, we undertake algebraic computations to derive Eq. (11). Starting with Eq. (4), we have

$$ \begin{aligned} &[\mathbf{f}(\overline{\mathbf{x}},\mathbf{x},t)]_{ip}[ \mathbf{f}(\overline{\mathbf{x}},\mathbf{x},t)]_{iq} \\ &\quad =[\mathbf{f}^{(1)}( \mathbf{x},t)]_{ip}[\mathbf{f}^{(1)}(\mathbf{x},t)]_{iq} \\ &\qquad {}+\frac{1}{2}\left ( \frac{\partial [\mathbf{f}^{(1)}(\mathbf{x},t)]_{ip}}{\partial x_{k}}[ \mathbf{f}^{(1)}(\mathbf{x},t)]_{iq}+[\mathbf{f}^{(1)}(\mathbf{x},t)]_{ip} \frac{\partial [\mathbf{f}^{(1)}(\mathbf{x},t)]_{iq}}{\partial x_{k}} \right )(\overline{x}_{k}-x_{k}) \\ &\qquad {}+\frac{1}{4} \frac{\partial [\mathbf{f}^{(1)}(\mathbf{x},t)]_{ip}}{\partial x_{k}} \frac{\partial [\mathbf{f}^{(1)}(\mathbf{x},t)]_{iq}}{\partial x_{s}}( \overline{x}_{k}-x_{k})(\overline{x}_{s}-x_{s})\,. \end{aligned} $$
(44)

Considering Eqs. (5) and (6) yields

$$\begin{aligned} &[\mathbf{f}(\overline{\mathbf{x}},\mathbf{x},t)]_{ip}[\mathbf{f}( \overline{\mathbf{x}},\mathbf{x},t)]_{iq} \\ &\quad =[\mathbf{c}^{(1)}( \mathbf{x},t)]_{pq}+\frac{1}{2}\mathbf{c}_{pqk}^{(12)}(\mathbf{x},t) \, (\overline{x}_{k}-x_{k}) +\frac{1}{4}\mathbf{c}_{pqks}^{(2)}(\mathbf{x},t)\, (\overline{x}_{k}-x_{k})( \overline{x}_{s}-x_{s})\,. \end{aligned}$$
(45)

Considering tensor \([\mathbf{e}(\overline{\mathbf{x}},\mathbf{x},t)]\), defined by Eq. (10), results in

$$\begin{aligned}{} [\mathbf{e}(\overline{\mathbf{x}},\mathbf{x},t)]_{pq}={}&\frac{1}{2} \left ([\mathbf{c}^{(1)}(\mathbf{x},t)]_{pq}-[\,\mathrm{I}\,]_{pq} \right )+\frac{1}{4}\mathbf{c}_{pqk}^{(12)}(\mathbf{x},t)\, ( \overline{x}_{k}-x_{k}) \\ &{} +\frac{1}{8}\mathbf{c}_{pqks}^{(2)}(\mathbf{x},t)\,(\overline{x}_{k}-x_{k})( \overline{x}_{s}-x_{s}), \end{aligned}$$
(46)

Finally, substituting the tensors \([\mathbf{e}^{(1)}(\mathbf{x},t)]\), \([\mathbf{e}^{(12)}(\overline{\mathbf{x}},\mathbf{x},t)]\), and \([\mathbf{e}^{(2)}(\overline{\mathbf{x}},\mathbf{x},t)]\), defined by Eqs. (7), (8), and (9), we obtain Eq. (11).

Appendix B

In this appendix, we show that m ( 0 ) (x)=1 in Proposition 3. Since \(\Omega \) is \(\mathbb{R}^{3}\), m ( 0 ) (x) is given by

m ( 0 ) (x)= R 3 α( x ,x)d x ,
(47)

where \(\alpha (\overline{\mathbf{x}},\mathbf{x})\) is defined in Eq. (18). It can be seen that \(\overline{\mathbf{x}}\mapsto \alpha (\overline{\mathbf{x}}, \mathbf{x})\) is the probability density function of a Gaussian \(\mathbb{R}^{3}\)-valued random variable with mean vector \(\mathbf{x}\) and covariance matrix \(\xi ^{2}\, [\,\mathrm{I}\,]\). Consequently, we have m ( 0 ) (x)=1.

Appendix C

Proof

Consider \(\pi ^{\mathrm{kin}}\) defined by Eq. (19). The first variation \(\delta \pi ^{\mathrm{kin}}\) is expressed as

$$ \delta \pi ^{\mathrm{kin}}(\mathbf{u};\delta \mathbf{u})=\int _{t_{0}}^{t_{1}} \int _{\Omega}\rho (\mathbf{x}) \frac{\partial u_{k}(\mathbf{x},t)}{\partial t} \frac{\partial \delta u_{k}(\mathbf{x},t)}{\partial t}\,d\mathbf{x}\,dt \,. $$
(48)

Subsequently, integrating by parts and since, for all \(\mathbf{x}\), \(\delta \mathbf{u}(\mathbf{x},t_{0})=0\) and \(\delta \mathbf{u}(\mathbf{x},t_{1})=0\), Eq. (48) can be transformed into

$$ \delta \pi ^{\mathrm{kin}}(\mathbf{u};\delta \mathbf{u}) =-\int _{t_{0}}^{t_{1}} \int _{\Omega}\rho (\mathbf{x}) \frac{\partial ^{2}u_{k}(\mathbf{x},t)}{\partial t^{2}}\delta u_{k}( \mathbf{x},t)\,d\mathbf{x}\,dt\,. $$
(49)

Considering \(\pi ^{\mathrm{def}}(\mathbf{u})\), \([\boldsymbol{\sigma}(\mathbf{u},\mathbf{x},t)]\), and h(u,x,t) defined in Eqs. (15), (23), and (24), the first variation \(-\delta \pi ^{\mathrm{def}}(\mathbf{u};\delta \mathbf{u})\) is expressed as

δ π def ( u ; δ u ) = t 0 t 1 Ω [ σ ( u , x , t ) ] i j δ u i ( x , t ) x j d x d t t 0 t 1 Ω h i j q ( u , x , t ) δ u i ( x , t ) x j x q d x d t .
(50)

Using an integration by parts, the first integral in the right-hand side of Eq. (50) can be written as

$$ \begin{aligned} -\int _{t_{0}}^{t_{1}}\int _{\Omega}[\boldsymbol{\sigma}( \mathbf{u},\mathbf{x},t)]_{ij} \frac{\partial \delta u_{i}(\mathbf{x},t)}{\partial x_{j}}\,d \mathbf{x}\,dt=-\int _{t_{0}}^{t_{1}}\int _{\partial \Omega}[ \boldsymbol{\sigma}(\mathbf{u},\mathbf{x},t)]_{ij}\,n_{j}( \mathbf{\mathbf{x}})\, \delta u_{i}(\mathbf{x},t)\,d\mathbf{x}\,dt \\ +\int _{t_{0}}^{t_{1}}\int _{\Omega} \frac{\partial [\boldsymbol{\sigma}(\mathbf{u},\mathbf{x},t)]_{ij}}{\partial x_{j}} \delta u_{i}(\mathbf{x},t)\,d\mathbf{x}\,dt\,, \end{aligned} $$
(51)

and the second integral in the right-hand side of Eq. (50) can be expressed as

t 0 t 1 Ω h i j q ( u , x , t ) δ u i ( x , t ) x j x q d x d t = t 0 t 1 Ω h i j q ( u , x , t ) δ u i ( x , t ) x j n q ( x ) d s d t + t 0 t 1 Ω x q ( h i j q ( u , x , t ) ) n j ( x ) δ u i ( x , t ) d s d t t 0 t 1 Ω x q x j ( h i j q ( u , x , t ) ) δ u i ( x , t ) d s d t .
(52)

Let \([\mathbf{q}(\mathbf{x})]\) and \([\mathbf{p}(\mathbf{x})]\) denote the orthogonal and parallel projection operators, respectively. The Kronecker delta \([\boldsymbol{\delta}]_{rj}\) is equal to the sum of \([\mathbf{q}(\mathbf{x})]_{rj}\) and \([\mathbf{p}(\mathbf{x})]_{rj}\). Given that \([\mathbf{q}(\mathbf{x})]_{rj}=n_{r}\,n_{j}\) and \([\mathbf{p}(\mathbf{x})]_{rj}=[\mathbf{p}(\mathbf{x})]_{sj}[ \mathbf{p}(\mathbf{x})]_{rs}\), the first integral in the right-hand side of Eq. (52) can be transformed into

t 0 t 1 Ω h i j q ( u , x , t ) n q ( x ) δ u i ( x , t ) x j d s d t = t 0 t 1 Ω h i j q ( u , x , t ) n j ( x ) n q ( x ) δ u i ( x , t ) n d s d t t 0 t 1 Ω h i j q ( u , x , t ) δ u i ( x , t ) x r ( [ p ( x ) ] s j [ p ( x ) ] r s ) n q ( x ) d s d t
(53)

The second integral in the right-hand side of Eq. (53) can be rewritten as

t 0 t 1 Ω h i j q ( u , x , t ) δ u i ( x , t ) x r ( [ p ( x ) ] s j [ p ( x ) ] r s ) n q ( x ) d s d t = t 0 t 1 Ω x r ( h i j q ( u , x , t ) n q ( x ) [ p ( x ) ] s j δ u i ( x , t ) ) [ p ( x ) ] r s d s d t + t 0 t 1 Ω x r ( h i j q ( u , x , t ) n q ( x ) [ p ( x ) ] s j ) [ p ( x ) ] r s δ u i ( x , t ) d s d t
(54)

Using the Gauss divergence formula for bounded surfaces and since \([\mathbf{p}(\mathbf{x})]_{sj}\,\nu _{s}(\mathbf{x})=\nu _{j}( \mathbf{x})\), the first integral in the right-hand side of Eq. (54) becomes

t 0 t 1 Ω x r ( h i j q ( u , x , t ) n q ( x ) [ p ( x ) ] s j δ u i ( x , t ) ) [ p ( x ) ] r s d s d t = t 0 t 1 Ω h i j q ( u , x , t ) n q ( x ) ν j ( x ) δ u i ( x , t ) d d t .
(55)

Sequentially substituting Eq. (55) into Eq. (54), Eq. (54) into Eq. (53), Eq. (53) into Eq. (52), Eqs. (52) and Eq. (51) into Eq. (50), and finally substituting Eqs. (50), (49), and (20) into Eq. (21), we obtain the Euler-Lagrange equations as presented in Proposition (2). □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La Valle, G., Soize, C. Identifying Second-Gradient Continuum Models in Particle-Based Materials with Pairwise Interactions Using Acoustic Tensor Methodology. J Elast (2024). https://doi.org/10.1007/s10659-024-10067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10659-024-10067-8

Keywords

Mathematics Subject Classification

Navigation