Skip to main content
Log in

Fabrication of folic acid-embedded aminated drug encapsulated zeolitic imidazolate framework as promising drug delivery system for lung cancer

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel pH-responsive drug carrier for the delivery of specific Docetaxel (DTX) administration is developed based on a zeolitic imidazolate framework (ZIF-8). Aminating the surface of ZIF-8 is allowed for the conjugation of folic acid (FA). Several spectroscopic studies characterized the newly fabricated DTX-encapsulated folic acid-embedded ethylene diamine (ED) ZIF-8 nanocomposites (DTX/FA@ED-ZIF-8). It has excellent chemical stability and high drug-loading efficiency. DTX from the folic acid-embedded aminated ZIF-8 (FA@ED-ZIF-8) is three-fold more efficient under acidic pH (5.0) than in physiological settings (pH 7.4), according to in vitro drug release tests. DTX/FA@ED-ZIF-8 exhibited cytotoxicity of 76.8% in an MTT experiment conducted in A549 and H1299 cells. Cell morphological and nuclear staining were investigated in the fabricated samples to support the MTT experiments. Further, the apoptosis mode of cell death was examined using Annexin V-FITC and PI by flow cytometry. These findings indicate that FA@ED-ZIF-8 holds great potential as a drug carrier for precise dosing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. S. Dai, T. Liu, Y.-Y. He, Y. Huang, L. Wang, F. Luo, Y. Li, Pan-cancer analysis of LINC02535 as a potential biomarker and its oncogenic role in lung adenocarcinoma. Heliyon. 8, e12108 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Yuan, Y. Zhao, H.-T. Arkenau, T. Lao, L. Chu, Q. Xu, Signal pathways and precision therapy of small-cell lung cancer. Signal Transduct. Target. Ther. 7, 187 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  3. B.T. Li, E.F. Smit, Y. Goto, K. Nakagawa, H. Udagawa, J. Mazières, M. Nagasaka, L. Bazhenova, A.N. Saltos, E. Felip, Trastuzumab deruxtecan in HER2-mutant non–small-cell lung cancer. N. Engl. J. Med. 386, 241–251 (2022)

    Article  CAS  PubMed  Google Scholar 

  4. Z. Wang, Q. Sun, B. Liu, Y. Kuang, A. Gulzar, F. He, S. Gai, P. Yang, J. Lin, Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord. Chem. Rev. 439, 213945 (2021)

    Article  CAS  Google Scholar 

  5. M. Ibrahim, R. Sabouni, G.A. Husseini, Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr. Med. Chem. 24, 193–214 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. L.-Q. Fu, X.-Y. Chen, M.-H. Cai, X.-H. Tao, Y.-B. Fan, X.-Z. Mou, Surface engineered metal-organic frameworks (MOFs) based novel hybrid systems for effective wound healing: a review of recent developments. Front. Bioeng. Biotechnol. 8, 576348 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. Zhang, F. Rong, C. Guo, F. Duan, L. He, M. Wang, Z. Zhang, M. Kang, M. Du, Metal–organic frameworks (MOFs) based electrochemical biosensors for early cancer diagnosis in vitro. Coord. Chem. Rev. 439, 213948 (2021)

    Article  CAS  Google Scholar 

  8. M.R. Saeb, N. Rabiee, M. Mozafari, F. Verpoort, L.G. Voskressensky, R. Luque, Metal–organic frameworks (MOFs) for cancer therapy. Materials. 14, 7277 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. H. Zhang, Q. Li, R. Liu, X. Zhang, Z. Li, Y. Luan, A versatile prodrug strategy to in situ encapsulate drugs in MOF nanocarriers: a case of cytarabine-IR820 prodrug encapsulated zif-8 toward chemo-photothermal therapy. Adv. Funct. Mater. 28, 1802830 (2018). https://doi.org/10.1002/adfm.201802830

    Article  CAS  Google Scholar 

  10. M. Xu, Y. Hu, W. Ding, F. Li, J. Lin, M. Wu, J. Wu, L.-P. Wen, B. Qiu, P.-F. Wei, Rationally designed rapamycin-encapsulated ZIF-8 nanosystem for overcoming chemotherapy resistance. Biomaterials 258, 120308 (2020)

    Article  CAS  PubMed  Google Scholar 

  11. H.N. Abdelhamid, Zeolitic imidazolate frameworks (ZIF-8) for biomedical applications: a review. Curr. Med. Chem. 28, 7023–7075 (2021)

    Article  CAS  PubMed  Google Scholar 

  12. Q. Wang, Y. Sun, S. Li, P. Zhang, Q. Yao, Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv. 10, 37600–37620 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. H. Xie, X. Liu, Z. Huang, L. Xu, R. Bai, F. He, M. Wang, L. Han, Z. Bao, Y. Wu, Nanoscale zeolitic imidazolate framework (ZIF)–8 in cancer theranostics: current challenges and prospects. Cancers (Basel). 14, 3935 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y.-T. Qin, H. Peng, X.-W. He, W.-Y. Li, Y.-K. Zhang, pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy. ACS Appl. Mater. Interfaces 11, 34268–34281 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. J. Yan, Y. Wang, X. Zhang, S. Liu, C. Tian, H. Wang, Targeted nanomedicine for prostate cancer therapy: docetaxel and curcumin co-encapsulated lipid–polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Deliv. 23, 1757–1762 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. J. Cai, K. Qian, X. Zuo, W. Yue, Y. Bian, J. Yang, J. Wei, W. Zhao, H. Qian, B. Liu, PLGA nanoparticle-based docetaxel/LY294002 drug delivery system enhances antitumor activities against gastric cancer. J. Biomater. Appl. 33, 1394–1406 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. D. Liu, Z. Liu, L. Wang, C. Zhang, N. Zhang, Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf. B 85, 262–269 (2011). https://doi.org/10.1016/j.colsurfb.2011.02.038

    Article  CAS  Google Scholar 

  18. L. Di Lauro, F. Belli, M.G. Arena, S. Carpano, G. Paoletti, D. Giannarelli, M. Lopez, Epirubicin, cisplatin and docetaxel combination therapy for metastatic gastric cancer. Ann. Oncol. 16, 1498–1502 (2005). https://doi.org/10.1093/annonc/mdi281

    Article  CAS  PubMed  Google Scholar 

  19. Q. Wang, Y.-T. Yen, C. Xie, F. Liu, Q. Liu, J. Wei, L. Yu, L. Wang, F. Meng, R. Li, B. Liu, Combined delivery of salinomycin and docetaxel by dual-targeting gelatinase nanoparticles effectively inhibits cervical cancer cells and cancer stem cells. Drug Deliv. 28, 510–519 (2021). https://doi.org/10.1080/10717544.2021.1886378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. Al Saqr, S.U. Wani, H.V. Gangadharappa, M.F. Aldawsari, E.-S. Khafagy, A.S.A. Lila, Enhanced cytotoxic activity of docetaxel-loaded silk fibroin nanoparticles against breast cancer cells. Polym. (2021). https://doi.org/10.3390/polym13091416

    Article  Google Scholar 

  21. J. Ai, Y. Xu, D. Li, Z. Liu, E. Wang, Folic acid as delivery vehicles: targeting folate conjugated fluorescent nanoparticles to tumors imaging. Talanta 101, 32–37 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. H. Samadian, S. Hosseini-Nami, S.K. Kamrava, H. Ghaznavi, A. Shakeri-Zadeh, Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy. J. Cancer Res. Clin. Oncol. 142, 2217–2229 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. N. Shahabadi, M. Razlansari, H. Zhaleh, K. Mansouri, Antiproliferative effects of new magnetic pH-responsive drug delivery system composed of Fe3O4, CaAl layered double hydroxide and levodopa on melanoma cancer cells. Mater. Sci. Eng. C 101, 472–486 (2019). https://doi.org/10.1016/j.msec.2019.04.004

    Article  CAS  Google Scholar 

  24. H. Li, Y. Wang, X. He, J. Chen, F. Xu, Z. Liu, Y. Zhou, A green deep eutectic solvent modified magnetic titanium dioxide nanoparticles for the solid-phase extraction of chymotrypsin. Talanta 230, 122341 (2021). https://doi.org/10.1016/j.talanta.2021.122341

    Article  CAS  PubMed  Google Scholar 

  25. M. Chelladurai, R. Sahadevan, G. Margavelu, S. Vijayakumar, Z.I. González-Sánchez, K. Vijayan, D. Balaji, Anti-skin cancer activity of Alpinia calcarata ZnO nanoparticles: characterization and potential antimicrobial effects. J. Drug Deliv. Sci. Technol. 61, 102180 (2021). https://doi.org/10.1016/j.jddst.2020.102180

    Article  CAS  Google Scholar 

  26. A. Nagarsenkar, L. Guntuku, S.D. Guggilapu, S. Gannoju, V.G.M. Naidu, N.B. Bathini, Synthesis and apoptosis inducing studies of triazole linked 3-benzylidene isatin derivatives. Eur. J. Med. Chem. 124, 782–793 (2016). https://doi.org/10.1016/j.ejmech.2016.09.009

    Article  CAS  PubMed  Google Scholar 

  27. A.H.Y. Kwok, Y. Wang, W.S. Ho, Cytotoxic and pro-oxidative effects of Imperata cylindrica aerial part ethyl acetate extract in colorectal cancer in vitro. Phytomedicine 23, 558–565 (2016). https://doi.org/10.1016/j.phymed.2016.02.015’

    Article  CAS  PubMed  Google Scholar 

  28. R. Foldbjerg, D.A. Dang, H. Autrup, Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch. Toxicol. 85, 743–750 (2011). https://doi.org/10.1007/s00204-010-0545-5

    Article  CAS  PubMed  Google Scholar 

  29. R. Prabhu, R. Anjali, G. Archunan, N.M. Prabhu, A. Pugazhendhi, N. Suganthy, Ecofriendly one pot fabrication of methyl gallate@ ZIF-L nanoscale hybrid as pH responsive drug delivery system for lung cancer therapy. Process Biochem. 84, 39–52 (2019)

    Article  Google Scholar 

  30. Z. Abbasi, E. Shamsaei, X.-Y. Fang, B. Ladewig, H. Wang, Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption. J. Colloid Interface Sci. 493, 150–161 (2017). https://doi.org/10.1016/j.jcis.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  31. M. Sandomierski, M. Jakubowski, M. Ratajczak, A. Voelkel, Zeolitic Imidazolate Framework-8 (ZIF-8) modified titanium alloy for controlled release of drugs for osteoporosis. Sci. Rep. 12, 9103 (2022). https://doi.org/10.1038/s41598-022-13187-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Sathiya Kamatchi, M.K. Mohamed Subarkhan, R. Ramesh, H. Wang, J.G. Małecki, Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalt. Trans. 49, 11385–11395 (2020). https://doi.org/10.1039/D0DT01476A

    Article  CAS  Google Scholar 

  33. R. Raj Kumar, M.K. Mohamed Subarkhan, R. Ramesh, Synthesis and structure of nickel(ii) thiocarboxamide complexes: effect of ligand substitutions on DNA/protein binding, antioxidant and cytotoxicity. RSC Adv. 5, 46760–46773 (2015). https://doi.org/10.1039/C5RA06112A

    Article  CAS  Google Scholar 

  34. D.P. Dorairaj, J. Haribabu, M. Dharmasivam, R.E. Malekshah, M.K. Mohamed Subarkhan, C. Echeverria, R. Karvembu, Ru(II)-p-cymene complexes of furoylthiourea ligands for anticancer applications against breast cancer cells. Inorg. Chem. 62, 11761–11774 (2023). https://doi.org/10.1021/acs.inorgchem.3c00757

    Article  CAS  PubMed  Google Scholar 

  35. M.K. Mohamed Subarkhan, R. Ramesh, Y. Liu, Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J. Chem. (2016). https://doi.org/10.1039/c6nj01936f

    Article  Google Scholar 

  36. S. Balaji, M.K. Mohamed Subarkhan, R. Ramesh, H. Wang, D. Semeril, Synthesis and structure of arene Ru(II) N∧O-chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics 39, 1366–1375 (2020). https://doi.org/10.1021/acs.organomet.0c00092

    Article  CAS  Google Scholar 

  37. M.K. Mohamed Subarkhan, L. Ren, B. Xie, C. Chen, Y. Wang, H. Wang, Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur. J. Med. Chem. (2019). https://doi.org/10.1016/j.ejmech.2019.06.061

    Article  PubMed  Google Scholar 

  38. M.K.M. Subarkhan, R. Ramesh, Ruthenium(II) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg. Chem. Front. 3, 1245–1255 (2016). https://doi.org/10.1039/c6qi00197a

    Article  CAS  Google Scholar 

  39. M.S. Mohamed Kasim, S. Sundar, R. Rengan, Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg. Chem. Front. 5, 585–596 (2018). https://doi.org/10.1039/c7qi00761b

    Article  CAS  Google Scholar 

  40. R. Pilliadugula, J. Haribabu, M.K. Mohamed Subarkhan, C. Echeverria, R. Karvembu, N. Gopalakrishnan, Effect of morphology and (Sn, Cr) doping on in vitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. J. Sci. Adv. Mater. Dev. 6, 351–363 (2021). https://doi.org/10.1016/j.jsamd.2021.03.003

    Article  CAS  Google Scholar 

  41. S. Swaminathan, J. Haribabu, M.K. Mohamed Subarkhan, D. Gayathri, N. Balakrishnan, N. Bhuvanesh, C. Echeverria, R. Karvembu, Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalt. Trans. 50, 16311–16325 (2021). https://doi.org/10.1039/D1DT02611A

    Article  CAS  Google Scholar 

  42. K. Giriraj, M.S. Mohamed Kasim, K. Balasubramaniam, S.K. Thangavel, J. Venkatesan, S. Suresh, P. Shanmugam, C. Karri, Various coordination modes of new coumarin Schiff bases toward Cobalt (III) ion: Synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl. Organomet. Chem. 36, e6536 (2022). https://doi.org/10.1002/aoc.6536

    Article  CAS  Google Scholar 

  43. G. Kalaiarasi, M. Mohamed Subarkhan, C.K. Fathima Safwana, S. Sruthi, T. Sathiya Kamatchi, B. Keerthana, S.L. Ashok Kumar, New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorg. Chim. Acta 535, 120863 (2022). https://doi.org/10.1016/j.ica.2022.120863

    Article  CAS  Google Scholar 

  44. S. Swaminathan, J. Haribabu, M.K. Mohamed Subarkhan, G. Manonmani, K. Senthilkumar, N. Balakrishnan, N. Bhuvanesh, C. Echeverria, R. Karvembu, Coordination behavior of acylthiourea ligands in their Ru(II)–benzene complexes─structures and anticancer activity. Organometallics 41, 1621–1630 (2022). https://doi.org/10.1021/acs.organomet.2c00127

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by Researchers Supporting Project number (RSP2024R383), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: Arunachalam Chinnathambi and Sulaiman Ali Alharbi: Conceptualization, Writing-Reviewing, and Editing. Sridhar Muthusami: Software, Data curation, Investigation, Formal analysis, Software, Validation. Mohankumar Ramar: Visualization, Methodology. Palanisamy Arulselvan: Supervision. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Palanisamy Arulselvan.

Ethics declarations

Conflict of interest

The authors declared no conflicts of interest regarding the publication of this paper.

Consent to participate

All authors have read and agreed to the submitted version of the manuscript.

Consent for publication

Not applicable to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chinnathambi, A., Alharbi, S.A., Ramar, M. et al. Fabrication of folic acid-embedded aminated drug encapsulated zeolitic imidazolate framework as promising drug delivery system for lung cancer. Journal of Materials Research (2024). https://doi.org/10.1557/s43578-024-01328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43578-024-01328-2

Keywords

Navigation