Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2024

A Hybrid Monte Carlo study of argon solidification

  • Vahideh Alizadeh , Marco Garofalo , Carsten Urbach and Barbara Kirchner EMAIL logo

Abstract

A GPU-based implementation of the Hybrid Monte Carlo (HMC) algorithm is presented to explore its utility in the chemistry of solidification at the example of liquid to solid argon. We validate our implementation by comparing structural characteristics of argon fluid-like phases from HMC and MD simulations. Examining solidification, both MD and HMC show similar trends. Despite observable differences, MD simulations and HMC agree within the errors during the phase transition. Introducing voids decreases the solidification temperature, aiding in the formation of a well-structured solids. Further, our findings highlight the importance of larger system sizes in simulating solidification processes. Simulations with a temperature dependent potential show ambiguous results for the solidification which may be attributed to the small system sizes. Future work aims to expand HMC capabilities for complex chemical phenomena in phase transitions.


Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.



Corresponding author: Barbara Kirchner, Mulliken Center for Theoretical Chemistry, Clausius Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstraße 4+6, D-53115 Bonn, Germany, E-mail:

Acknowledgments

BK likes to acknowledge the fruitful and helpful relationship to her dear colleague Thomas Bredow.

  1. Research ethics: All research ethical standards have been met in this publication.

  2. Author contributions: Vahideh Alizadeh: Conceptualization (equal); Methodology (equal); Software (equal); Visualization (equal); Writing - original draft (equal); Writing - review & editing (equal). Marco Garofalo: Methodology (equal); Software (equal); Visualization (equal); Writing - original draft (equal); Writing - review & editing (equal). Carsten Urbach: Conceptualization (equal); Supervision (equal); Writing - review & editing (equal). Barbara Kirchner: Conceptualization (equal); Supervision (equal); Writing - review & editing (equal).

  3. Competing interests: The authors have no conflict of interest to disclose.

  4. Research funding: This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and the NSFC through the funds provided to the Sino-German Collaborative Research Center CRC 110 “Symmetries and the Emergence of the Structure in QCD” (DFG Project-ID 196253076 -TRR 110, NSFC Grant No. 12070131001). This work is part of the preparation for the newly funded CRC 1639 NuMeriQS.

  5. Data availability: Code to reproduce this study are publicly available in Github (https://github.com/urbach/chemHMC). Source data are provided with this paper.

References

1. Frenkel, D., Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Elsevier: Amsterdam, 2023.10.1016/B978-0-32-390292-2.00011-8Search in Google Scholar

2. Allen, M. P., Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, 2017.10.1093/oso/9780198803195.001.0001Search in Google Scholar

3. Ciccotti, G., Dellago, C., Ferrario, M., Hernández, E., Tuckerman, M. Eur. Phys. J. B 2022, 95, 1–10.10.1140/epjb/s10051-021-00249-xSearch in Google Scholar

4. Hsu, W.-T., Piomponi, V., Merz, P. T., Bussi, G., Shirts, M. R. J. Chem. Theory Comput. 2023, 19, 1805–1817; https://doi.org/10.1021/acs.jctc.2c01258.Search in Google Scholar PubMed

5. Hénin, J., Lelièvre, T., Shirts, M. R., Valsson, O., Delemotte, L. Living J. Comput. Mol. Sci. 2022, 4, 1583; https://doi.org/10.33011/livecoms.4.1.1583.Search in Google Scholar

6. Hassanali, A. A., Cuny, J., Verdolino, V., Parrinello, M. Philos. Trans. R. Soc. A 2014, 372, 20120482; https://doi.org/10.1098/rsta.2012.0482.Search in Google Scholar PubMed

7. Di Pino, S., Perez Sirkin, Y. A., Morzan, U. N., Sánchez, V. M., Hassanali, A., Scherlis, D. A. Angew. Chem. Int. Ed. 2023, 62, e202306526; https://doi.org/10.1002/anie.202306526.Search in Google Scholar PubMed

8. Kao, Y.-T., Guo, X., Yang, Y., Liu, Z., Hassanali, A., Song, Q.-H., Wang, L., Zhong, D. J. Phys. Chem. B 2012, 116, 9130–9140; https://doi.org/10.1021/jp304518f.Search in Google Scholar PubMed PubMed Central

9. Dreßler, C., Kabbe, G., Brehm, M., Sebastiani, D. J. Chem. Phys. 2020, 152, 114114; https://doi.org/10.1063/1.5140635.Search in Google Scholar PubMed

10. Huber, T., Torda, A. E., van Gunsteren, W. F. J. Comput.-Aided Mol. Des. 1994, 8, 695–708; https://doi.org/10.1007/bf00124016.Search in Google Scholar PubMed

11. Beutler, T. C., van Gunsteren, W. F. J. Chem. Phys. 1994, 101, 1417–1422; https://doi.org/10.1063/1.467765.Search in Google Scholar

12. Barducci, A., Bonomi, M., Parrinello, M. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 826–843; https://doi.org/10.1002/wcms.31.Search in Google Scholar

13. Bussi, G., Laio, A. Nat. Rev. Phys. 2020, 2, 200–212; https://doi.org/10.1038/s42254-020-0153-0.Search in Google Scholar

14. Tuckerman, M., Berne, B. J., Martyna, G. J. J. Chem. Phys. 1992, 97, 1990–2001; https://doi.org/10.1063/1.463137.Search in Google Scholar

15. Abreu, C. R., Tuckerman, M. E. Mol. Phys. 2021, 119, e1923848; https://doi.org/10.1080/00268976.2021.1923848.Search in Google Scholar

16. Dellago, C., Bolhuis, P. G. Transition path sampling and other advanced simulation techniques for rare events. In Advanced Computer Simulation Approaches for Soft Matter Sciences III; Holm, C., Kremer, K., Eds. Springer: Berlin, Heidelberg, 2009; pp. 167–233. chapter 3.10.1007/978-3-540-87706-6_3Search in Google Scholar

17. Bolhuis, P. G., Swenson, D. W. Adv. Theory Simul. 2021, 4, 2000237; https://doi.org/10.1002/adts.202000237.Search in Google Scholar

18. Mullen, R. G., Shea, J.-E., Peters, B. J. Chem. Theory Comput. 2015, 11, 2421–2428; https://doi.org/10.1021/acs.jctc.5b00032.Search in Google Scholar PubMed

19. Van Erp, T. S., Moroni, D., Bolhuis, P. G. J. Chem. Phys. 2003, 118, 7762–7774; https://doi.org/10.1063/1.1562614.Search in Google Scholar

20. Höllmer, P., Maggs, A. C., Krauth, W. J. Chem. Phys. 2022, 156, 084108; https://doi.org/10.1063/5.0080101.Search in Google Scholar PubMed

21. Haji-Akbari, A. J. Chem. Phys. 2018, 149, 072303; https://doi.org/10.1063/1.5018303.Search in Google Scholar PubMed

22. Husic, B. E., Pande, V. S. J. Am. Chem. Soc. 2018, 140, 2386–2396; https://doi.org/10.1021/jacs.7b12191.Search in Google Scholar PubMed

23. Bürgi, R., Kollman, P. A., van Gunsteren, W. F. Proteins: Struct., Funct., Bioinf. 2002, 47, 469–480; https://doi.org/10.1002/prot.10046.Search in Google Scholar PubMed

24. Griebel, M., Zumbusch, G., Knapek, S. Numerical Simulation in Molecular Dynamics, Numerics, Algorithms, Parallelization, Applications; Springer-Verlag: Berlin, Heidelberg, 2007.Search in Google Scholar

25. Prokhorenko, S., Kalke, K., Nahas, Y., Bellaiche, L. npj Comput. Mater. 2018, 4, 80; https://doi.org/10.1038/s41524-018-0137-0.Search in Google Scholar

26. Mehlig, B., Heermann, D., Forrest, B. Phys. Rev. B 1992, 45, 679–685; https://doi.org/10.1103/physrevb.45.679.Search in Google Scholar PubMed

27. Tagawa, T., Kaneko, T., Miura, S. Mol. Simul. 2017, 43, 1291–1294; https://doi.org/10.1080/08927022.2017.1342125.Search in Google Scholar

28. Krieg, S., Luu, T., Ostmeyer, J., Papaphilippou, P., Urbach, C. Comput. Phys. Commun. 2019, 236, 15–25; https://doi.org/10.1016/j.cpc.2018.10.008.Search in Google Scholar

29. Duane, S., Kennedy, A. D., Pendleton, B. J., Roweth, D. Phys. Lett. B 1987, 195, 216–222; https://doi.org/10.1016/0370-2693(87)91197-x.Search in Google Scholar

30. Guo, J., Haji-Akbari, A., Palmer, J. C. J. Theor. Comput. Chem. 2018, 17, 1840002; https://doi.org/10.1142/s0219633618400023.Search in Google Scholar

31. Fernández-Pendás, M., Escribano, B., Radivojević, T., Akhmatskaya, E. J. Mol. Model. 2014, 20, 1–10.10.1007/s00894-014-2487-ySearch in Google Scholar PubMed

32. Barhaghi, M. S., Crawford, B., Schwing, G., Hardy, D. J., Stone, J. E., Schwiebert, L., Potoff, J., Tajkhorshid, E. J. Chem. Theory Comput. 2022, 18, 4983–4994; https://doi.org/10.1021/acs.jctc.1c00911.Search in Google Scholar PubMed PubMed Central

33. Siggel, M., Kehl, S., Reuter, K., Köfinger, J., Hummer, G. J. Chem. Phys. 2022, 157, 174801; https://doi.org/10.1063/5.0101118.Search in Google Scholar PubMed

34. Singh, A. N., Dyre, J. C., Pedersen, U. R. J. Chem. Phys. 2021, 154, 134501; https://doi.org/10.1063/5.0045398.Search in Google Scholar PubMed

35. Stephan, S., Thol, M., Vrabec, J., Hasse, H. J. Chem. Inf. Model. 2019, 59, 4248–4265; https://doi.org/10.1021/acs.jcim.9b00620.Search in Google Scholar PubMed

36. Mick, J., Hailat, E., Russo, V., Rushaidat, K., Schwiebert, L., Potoff, J. Comput. Phys. Commun. 2013, 184, 2662–2669; https://doi.org/10.1016/j.cpc.2013.06.020.Search in Google Scholar

37. Rutkai, G., Thol, M., Span, R. Vrabec, J. Mol. Phys. 2017, 115, 1104–1121; https://doi.org/10.1080/00268976.2016.1246760.Search in Google Scholar

38. Chen, B., Siepmann, J. I., Klein, M. L. J. Phys. Chem. B 2001, 105, 9840–9848; https://doi.org/10.1021/jp011950p.Search in Google Scholar

39. Maruyama, M., Takeya, S., Yoneyama, A., Ishikawa, T., Misawa, T., Nagayama, S., Alavi, S., Ohmura, R. Ind. Eng. Chem. Res. 2023, 131, 305–314; https://doi.org/10.1016/j.jiec.2023.10.029.Search in Google Scholar

40. Alavi, S., Ripmeester, J. A. Angew. Chem. Int. Ed. 2007, 46, 6102–6105; https://doi.org/10.1002/anie.200700250.Search in Google Scholar PubMed

41. Lee, C. F., Wurtz, J. D. J. Phys. D: Appl. Phys. 2019, 52, 023001; https://doi.org/10.1088/1361-6463/aae510.Search in Google Scholar

42. Juetten, S., Bredow, T. J. Phys. Chem. C 2022, 126, 7809–7817; https://doi.org/10.1021/acs.jpcc.2c00572.Search in Google Scholar

43. Von Domaros, M., Liu, Y., Butman, J. L., Perlt, E., Geiger, F. M., Tobias, D. J. J. Phys. Chem. B 2021, 125, 3932–3941; https://doi.org/10.1021/acs.jpcb.0c11158.Search in Google Scholar PubMed

44. Zheng, C., Simpson, R. E., Tang, K., Ke, Y., Nemati, A., Zhang, Q., Hu, G., Lee, C., Teng, J., Yang, J. K., Wu, J., Qiu, C.-W. Chem. Rev. 2022, 122, 15450–15500; https://doi.org/10.1021/acs.chemrev.2c00171.Search in Google Scholar PubMed

45. Joshi, K., Paliwal, U., Galav, K., Trivedi, D., Bredow, T. J. Solid State Chem. 2013, 204, 367–372; https://doi.org/10.1016/j.jssc.2013.06.015.Search in Google Scholar

46. Stahl, B., Bredow, T. ChemPhysChem 2022, 23, e202200131; https://doi.org/10.1002/cphc.202200131.Search in Google Scholar PubMed PubMed Central

47. Moura Ramos, J. J., Diogo, H. P. J. Chem. Educ. 2006, 83, 1389–1392; https://doi.org/10.1021/ed083p1389.Search in Google Scholar

48. Viciosa, M. T., Correia, N. T., Sánchez, M. S., Gomez Ribelles, J. L., Dionisio, M. J. Phys. Chem. B 2009, 113, 14196–14208; https://doi.org/10.1021/jp903208k.Search in Google Scholar PubMed

49. Mendoza-Coto, A., Nicolao, L., Díaz-Méndez, R. Sci. Rep. 2019, 9, 2020; https://doi.org/10.1038/s41598-018-38465-8.Search in Google Scholar PubMed PubMed Central

50. Hwang, H., Weitz, D. A., Spaepen, F. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 1180–1184; https://doi.org/10.1073/pnas.1813885116.Search in Google Scholar PubMed PubMed Central

51. Santiso, E. E., Trout, B. L. J. Chem. Phys. 2015, 143, 174109; https://doi.org/10.1063/1.4934356.Search in Google Scholar PubMed

52. Yoshida, H. Phys. Lett. A 1990, 150, 262–268; https://doi.org/10.1016/0375-9601(90)90092-3.Search in Google Scholar

53. Omelyan, I., Mryglod, I., Folk, R. Comput. Phys. Commun. 2003, 151, 272–314; https://doi.org/10.1016/s0010-4655(02)00754-3.Search in Google Scholar

54. Horowitz, A. M. Phys. Lett. B 1991, 268, 247–252; https://doi.org/10.1016/0370-2693(91)90812-5.Search in Google Scholar

55. Urbach, C., Jansen, K., Shindler, A., Wenger, U. Comput. Phys. Commun. 2006, 174, 87–98; https://doi.org/10.1016/j.cpc.2005.08.006.Search in Google Scholar

56. Girolami, M., Calderhead, B. J. R. Stat. Soc. B 2011, 73, 123–214; https://doi.org/10.1111/j.1467-9868.2010.00765.x.Search in Google Scholar

57. Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri, R., Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D., Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., Wilke, J. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 805–817; https://doi.org/10.1109/tpds.2021.3097283.Search in Google Scholar

58. Trott, C., Berger-Vergiat, L., Poliakoff, D., Rajamanickam, S., Lebrun-Grandie, D., Madsen, J., Al Awar, N., Gligoric, M., Shipman, G., Womeldorff, G. Comput. Sci. Eng. 2021, 23, 10–18; https://doi.org/10.1109/mcse.2021.3098509.Search in Google Scholar

59. Edwards, H. C., Trott, C. R., Sunderland, D. J. Parallel. Distrib. Comput. 2014, 74, 3202–3216; https://doi.org/10.1016/j.jpdc.2014.07.003.Search in Google Scholar

60. Gamma, E., Helm, R., Johnson, R., Vlissides, J. M. Design Patterns: Elements of Reusable Object-Oriented Software; Addison-Wesley Professional: Boston, 1994.Search in Google Scholar

61. Quentrec, B., Brot, C. J. Comput. Phys. 1973, 13, 430–432; https://doi.org/10.1016/0021-9991(73)90046-6.Search in Google Scholar

62. Hockney, R. W., Eastwood, J. W. Computer Simulation Using Particles; Routledge: Oxfordshire, 1981.Search in Google Scholar

63. Pruteanu, C. G., Loveday, J. S., Ackland, G. J., Proctor, J. E. J. Phys. Chem. Lett. 2022, 13, 8284–8289; https://doi.org/10.1021/acs.jpclett.2c02004.Search in Google Scholar PubMed PubMed Central

64. Losey, J., Sadus, R. J. J. Phys. Chem. B 2019, 123, 8268–8273; https://doi.org/10.1021/acs.jpcb.9b05426.Search in Google Scholar PubMed

65. Heyes, D., Dini, D., Pieprzyk, S., Brańka, A. J. Chem. Phys. 2023, 158, 134502; https://doi.org/10.1063/5.0143651.Search in Google Scholar PubMed

66. Nayhouse, M., Amlani, A. M., Orkoulas, G. J. Chem. Phys. 2011, 135, 154103; https://doi.org/10.1063/1.3651193.Search in Google Scholar PubMed

67. Craven, G. T., Lubbers, N., Barros, K., Tretiak, S. J. Chem. Phys. 2020, 153, 104502; https://doi.org/10.1063/5.0017894.Search in Google Scholar PubMed

68. Shanks, B. L., Potoff, J. J., Hoepfner, M. P. J. Phys. Chem. Lett. 2022, 13, 11512–11520; https://doi.org/10.1021/acs.jpclett.2c03163.Search in Google Scholar PubMed

69. Madin, O. C., Boothroyd, S., Messerly, R. A., Fass, J., Chodera, J. D., Shirts, M. R. J. Chem. Inf. Model. 2022, 62, 874–889; https://doi.org/10.1021/acs.jcim.1c00829.Search in Google Scholar PubMed PubMed Central

70. Chatwell, R. S. Vrabec, J. J. Chem. Phys. 2020, 152, 094503; https://doi.org/10.1063/1.5142364.Search in Google Scholar PubMed

71. Ströker, P., Hellmann, R., Meier, K. Phys. Rev. E 2022, 105, 064129; https://doi.org/10.1103/physreve.105.064129.Search in Google Scholar PubMed

72. de Gregorio, R., Benet, J., Katcho, N. A., Blas, F. J., MacDowell, L. G. J. Chem. Phys. 2012, 136, 104703; https://doi.org/10.1063/1.3692608.Search in Google Scholar PubMed

73. Huber, H., Dyson, A. J., Kirchner, B. Chem. Soc. Rev. 1999, 28, 121–133; https://doi.org/10.1039/a803457e.Search in Google Scholar

74. van Gunsteren, W. F., Daura, X., Hansen, N., Mark, A. E., Oostenbrink, C., Riniker, S., Smith, L. J. Angew. Chem. Int. Ed. 2018, 57, 884–902; https://doi.org/10.1002/anie.201702945.Search in Google Scholar PubMed

75. Mie, G. Ann. Phys. 1903, 316, 657–697; https://doi.org/10.1002/andp.19033160802.Search in Google Scholar

76. Lennard-Jones, J. E. Proc. Phys. Soc. 1931, 43, 461–482; https://doi.org/10.1088/0959-5309/43/5/301.Search in Google Scholar

77. Kihara, T. Rev. Mod. Phys. 1953, 25, 831–843; https://doi.org/10.1103/revmodphys.25.831.Search in Google Scholar

78. Dymond, J., Alder, B. J. Chem. Phys. 1969, 51, 309–320; https://doi.org/10.1063/1.1671724.Search in Google Scholar

79. Barker, J., Pompe, A. Aust. J. Chem. 1968, 21, 1683–1694; https://doi.org/10.1071/ch9681683.Search in Google Scholar

80. Barker, J., Fisher, R., Watts, R. Mol. Phys. 1971, 21, 657–673; https://doi.org/10.1080/00268977100101821.Search in Google Scholar

81. Fischer, J., Wendland, M. Fluid Phase Equilib. 2023, 573, 113876; https://doi.org/10.1016/j.fluid.2023.113876.Search in Google Scholar

82. Khabibrakhmanov, A., Fedorov, D. V., Tkatchenko, A. J. Chem. Theory Comput. 2023, 19, 7895–7907; https://doi.org/10.1021/acs.jctc.3c00797.Search in Google Scholar PubMed PubMed Central

83. Stephan, S., Staubach, J., Hasse, H. Fluid Phase Equilib. 2020, 523, 112772; https://doi.org/10.1016/j.fluid.2020.112772.Search in Google Scholar

84. Méndez-Bermúdez, J. G., Guillén-Escamilla, I., Méndez-Maldonado, G. A., Alva-Tamayo, J. A. D. J. Phys. Commun. 2022, 6, 041002; https://doi.org/10.1088/2399-6528/ac62a2.Search in Google Scholar

85. Solca, J., Dyson, A. J., Steinebrunner, G., Kirchner, B., Huber, H. Chem. Phys. 1997, 224, 253–261; https://doi.org/10.1016/s0301-0104(97)00317-0.Search in Google Scholar

86. Solca, J., Dyson, A. J., Steinebrunner, G., Kirchner, B., Huber, H. J. Chem. Phys. 1998, 108, 4107–4111; https://doi.org/10.1063/1.475808.Search in Google Scholar

87. Kirchner, B., Ermakova, E., Solca, J., Huber, H. Chem. Eur. J. 1998, 4, 383–388; https://doi.org/10.1002/(SICI)1521-3765(19980310)4:3<383::AID-CHEM383>3.0.CO;2-K.10.1002/(SICI)1521-3765(19980310)4:3<383::AID-CHEM383>3.3.CO;2-BSearch in Google Scholar

88. Anta, J., Lomba, E., Lombardero, M. Phys. Rev. E 1997, 55, 2707–2712; https://doi.org/10.1103/physreve.55.2707.Search in Google Scholar

89. Leonhard, K., Deiters, U. Mol. Phys. 2000, 98, 1603–1616; https://doi.org/10.1080/00268970009483367.Search in Google Scholar

90. Bukowski, R., Szalewicz, K. J. Chem. Phys. 2001, 114, 9518–9531; https://doi.org/10.1063/1.1370084.Search in Google Scholar

91. Eskandari Nasrabad, A., Laghaei, R., Deiters, U. J. Chem. Phys. 2004, 121, 6423–6434; https://doi.org/10.1063/1.1783271.Search in Google Scholar

92. Eskandari Nasrabad, A., Laghaei, R. J. Chem. Phys. 2006, 125, 084510; https://doi.org/10.1063/1.2358132.Search in Google Scholar

93. Marcelli, G., Sadus, R. J. J. Chem. Phys. 2000, 112, 6382–6385; https://doi.org/10.1063/1.481199.Search in Google Scholar

94. Wang, L., Sadus, R. J. Phys. Rev. E 2006, 74, 031203; https://doi.org/10.1103/physreve.74.031203.Search in Google Scholar

95. Vlasiuk, M., Sadus, R. J. J. Chem. Phys. 2017, 146, 244504; https://doi.org/10.1063/1.4986917.Search in Google Scholar PubMed

96. Pahl, E., Calvo, F., Koci, L., Schwerdtfeger, P. Angew. Chem. Int. Ed. 2008, 47, 8207–8210; https://doi.org/10.1002/anie.200802743.Search in Google Scholar PubMed

97. Deiters, U. K., Sadus, R. J. J. Chem. Phys. 2019, 150, 134504; https://doi.org/10.1063/1.5085420.Search in Google Scholar PubMed

98. Deiters, U. K., Sadus, R. J. J. Phys. Chem. B 2021, 125, 8522–8531; https://doi.org/10.1021/acs.jpcb.1c04272.Search in Google Scholar PubMed

99. Woon, D. E., Dunning, T. H.Jr. J. Chem. Phys. 1994, 100, 2975–2988; https://doi.org/10.1063/1.466439.Search in Google Scholar

100. Pfleiderer, T., Waldner, I., Bertagnolli, H., Tödheide, K., Kirchner, B., Huber, H., Fischer, H. E. J. Chem. Phys. 1999, 111, 2641–2646; https://doi.org/10.1063/1.479539.Search in Google Scholar

101. Thompson, A. P., Aktulga, H. M., Berger, R., Bolintineanu, D. S., Brown, W. M., Crozier, P. S., in’t Veld, P. J., Kohlmeyer, A., Moore, S. G., Nguyen, T. D., others, Stevens, M. J., Tranchida, J., Trott, C., Plimpton, S. J. Comput. Phys. Commun. 2022, 271, 108171; https://doi.org/10.1016/j.cpc.2021.108171.Search in Google Scholar

102. Nosé, S. J. Chem. Phys. 1984, 81, 511–519; https://doi.org/10.1063/1.447334.Search in Google Scholar

103. Hoover, W. G. Phys. Rev. A 1985, 31, 1695; https://doi.org/10.1103/physreva.31.1695.Search in Google Scholar PubMed

104. Latimer, K., Dwaraknath, S., Mathew, K., Winston, D., Persson, K. A. npj Comput. Mater. 2018, 4, 40; https://doi.org/10.1038/s41524-018-0091-x.Search in Google Scholar

105. Al-Matar, A. K., Tobgy, A. H., Suleiman, I. A. Mol. Simul. 2008, 34, 289–294; https://doi.org/10.1080/08927020701829864.Search in Google Scholar

106. Al-Matar, A. K., Tobgy, A. H., Suleiman, I. A., Al-Faiad, M. A. Int. J. Comput. Methods 2015, 12, 1550003; https://doi.org/10.1142/s0219876215500036.Search in Google Scholar

107. Cordina, R. J., Smith, B., Tuttle, T. J. Comput. Chem. 2023, 44, 1795–1801; https://doi.org/10.1002/jcc.27128.Search in Google Scholar PubMed

108. Zhang, H., Liu, F., Yang, Y., Sun, D. Sci. Rep. 2017, 7, 10241; https://doi.org/10.1038/s41598-017-10662-x.Search in Google Scholar PubMed PubMed Central

109. Froömbgen, T., Blasius, J., Alizadeh, V., Chaumont, A., Brehm, M., Kirchner, B. J. Chem. Inf. Model. 2022, 62, 5634–5644; https://doi.org/10.1021/acs.jcim.2c01244.Search in Google Scholar PubMed

110. Bocchetti, V., Diep, H. T. J. Chem. Phys. 2013, 138, 104122; https://doi.org/10.1063/1.4794916.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0107).


Received: 2023-12-13
Accepted: 2023-12-20
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0107/html
Scroll to top button