Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter April 5, 2024

A new class of pyrrolo[2,3-b]quinoxalines: synthesis, anticancer and antimicrobial activities

  • Bader A. Salameh EMAIL logo , Eman H. Al-Hushki , Wamidh H. Talib , Raed Ghanem , Fatima-Azzahra Delmani and Asma I. Mahmod

Abstract

A series of 3-chloro-1-aryl-4-dihydro-2H-pyrrolo[2,3-b]quinoxalin-2-ones and 3-chloro-1-aryl-6,7-dimethyl-1,4-dihydro-2H-pyrrolo[2,3-b]quinoxalin-2-ones was prepared by the condensation of o-phenylenediamine or 4,5-dimethyl-1,2-aminobenzene with N-aryl-3,4-dichloro-maleimides. All the prepared quinoxalines were tested for their antitumor activity against three human cancer cell lines (prostate cells PC3, colorectal cells Caco-2, and cervical cells HeLa), and a mammalian cell line (Vero cells). The compounds were also tested for their antibacterial properties against three different bacterial cells Escherichia coli, Bacillus spizizenii, and Pseudomonas aeruginosa. The compounds 3c, 3d, 3g, 3h, 3i and 4a, 4b, 4h showed anti-proliferative activity against the tested cell lines. Regarding their antibacterial activity, compounds 3a, 3g, 4a, and 4h showed inhibitory activity against E. coli, and B. spizizenii only.


Corresponding author: Bader A. Salameh, Department of Chemistry, Faculty of Science, The Hashemite University, P. O. Box 330127, Zarqa 13133, Jordan, E-mail:

Funding source: Hashemite University

Acknowledgments

The Authors thank the Hashemite University for funding.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: All authors state no conflict of interest.

  4. Research funding: This research is funded by The Hashemite University.

  5. Data availability: Not applicable.

References

1. Mamedov, V. A. Quinoxalines: Synthesis, Reactions, Mechanisms and Structure; Springer: Cham (Switzerland), 2016.Search in Google Scholar

2. Brown, D. J.; Taylor, E. C.; Ellman, J. A. Quinoxalines, Supplement 2; John Wiley: Hoboken, New Jersy, 2004.Search in Google Scholar

3. Kaushal, T.; Srivastava, G.; Sharma, A.; Singh Negi, A. Bioorg. Med. Chem. 2019, 27, 16–35; https://doi.org/10.1016/j.bmc.2018.11.021.Search in Google Scholar PubMed

4. Lahue, B. R.; Snyder, J. K. Prog. Heterocycl. Chem. 2000, 12, 263–293.10.1016/S0959-6380(00)80016-1Search in Google Scholar

5. Montana, M.; Correard, F.; Khoumeri, O.; Esteve, M.-A.; Terme, T.; Vanelle, P. Molecules 2014, 19, 14987–14998; https://doi.org/10.3390/molecules190914987.Search in Google Scholar PubMed PubMed Central

6. Mamedov, V. A.; Kalinin, A. A. Chem. Heterocycl. Compd. 2010, 46, 641–664; https://doi.org/10.1007/s10593-010-0565-3.Search in Google Scholar

7. Montana, M.; Mathias, F.; Terme, T.; Vanelle, P. Eur. J. Med. Chem. 2019, 163, 136–147; https://doi.org/10.1016/j.ejmech.2018.11.059.Search in Google Scholar PubMed

8. Ronga, L.; Del Favero, M.; Cohen, A.; Soum, C.; Le Pape, P.; Savrimoutou, S.; Pinaud, N.; Mullie, C.; Daulouede, S.; Vincendeau, P.; Farvacques, N.; Agnamey, P.; Pagniez, F.; Hutter, S.; Azas, N.; Sonnet, P.; Guillon, J. Eur. J. Med. Chem. 2014, 81, 378–393; https://doi.org/10.1016/j.ejmech.2014.05.037.Search in Google Scholar PubMed

9. van Heerden, L.; Cloete, T. T.; Breytenbach, J. W.; de Kock, C.; Smith, P. J.; Breytenbach, J. C.; N’Da, D. D. Eur. J. Med. Chem. 2012, 55, 335–345; https://doi.org/10.1016/j.ejmech.2012.07.037.Search in Google Scholar PubMed

10. Primas, N.; Suzanne, P.; Verhaeghe, P.; Hutter, S.; Kieffer, C.; Laget, M.; Cohen, A.; Broggi, J.; Lancelot, J.-C.; Lesnard, A.; Dallemagne, P.; Rathelot, P.; Rault, S.; Vanelle, P.; Azas, N. Eur. J. Med. Chem. 2014, 83, 26–35; https://doi.org/10.1016/j.ejmech.2014.06.014.Search in Google Scholar PubMed

11. Xu, H.; Fan, L. Eur. J. Med. Chem. 2011, 46, 1919–1925; https://doi.org/10.1016/j.ejmech.2011.02.035.Search in Google Scholar PubMed

12. Kalinin, A. A.; Islamova, L. N.; Fazleeva, G. M. Chem. Heterocycl. Compd. (N. Y., NY, U. S.) 2019, 55, 584–597; https://doi.org/10.1007/s10593-019-02501-w.Search in Google Scholar

13. Arcadi, A.; Cacchi, S.; Fabrizi, G.; Parisi, L. M. Tetrahedron Lett. 2004, 45, 2431–2434; https://doi.org/10.1016/j.tetlet.2004.01.058.Search in Google Scholar

14. Ostrowska, K.; Zylewski, M.; Walocha, K. Heterocycles 2002, 57, 1413–1421; https://doi.org/10.3987/com-02-9499.Search in Google Scholar

15. Chemboli, R.; Kapavarapu, R.; Deepti, K.; Prasad, K. R. S.; Reddy, A. G.; Kumar, A. V. D. N.; Rao, M. V. B.; Pal, M. J. Mol. Struct. 2021, 1230, 129868; https://doi.org/10.1016/j.molstruc.2020.129868.Search in Google Scholar PubMed PubMed Central

16. Salameh, B. A.; Abu-Safieh, K. A.; Al-Hushki, E. H.; Talib, W. H.; Al-Ataby, I. A.; Al-Qawasmeh, R. A. Monatsh. Chem. 2020, 151, 1609–1619; https://doi.org/10.1007/s00706-020-02685-4.Search in Google Scholar

17. Salameh, B. A.; Mahmoud, H.; Khanfar, M. A.; Al-Qawasmeh, R. A. J. Heterocycl. Chem. 2019, 56, 1530–1541; https://doi.org/10.1002/jhet.3528.Search in Google Scholar

18. Salameh, B. A.; AlDamen, M. A. Heterocycles 2020, 100, 1426–1440; https://doi.org/10.3987/com-20-14293.Search in Google Scholar

19. Salameh, B. A.; Abu-Safieh, K. A.; Al-Kaabenah, S. R. A.; Al-Qawasmeh, R. A. Res. Chem. Intermed. 2014, 40, 3001–3009; https://doi.org/10.1007/s11164-013-1146-8.Search in Google Scholar

20. Katritzky, A. R.; Fan, W.-Q.; Li, Q.-L.; Bayyuk, S. J. Heterocycl. Chem. 1989, 26, 885–892; https://doi.org/10.1002/jhet.5570260401.Search in Google Scholar

21. Hanaineh-Abdelnour, L.; Bayyuk, S.; Theodorie, R. Tetrahedron 1999, 55, 11859–11870; https://doi.org/10.1016/s0040-4020(99)00672-9.Search in Google Scholar

22. Al-Ashmawi, M.; Meise, W.; El-Sayed, A.-H.; Lashine, E.-S.; Abou-Kull, M. Zagazig J. Pharmaceut. Sci. 1994, 3, 8–19; https://doi.org/10.21608/zjps.1994.186595.Search in Google Scholar

23. Dimroth, P.; Dury, K. Process for the Preparation of 4,7-Diaza-2-Oxindole Derivatives; DE1196205, 1965.Search in Google Scholar

24. Hanaineh-Abdelnour, L.; Salameh, B. A. Heterocycles 1999, 51, 2931–2940; https://doi.org/10.3987/com-99-8716.Search in Google Scholar

25. Matsuoka, M.; Takagi, K.; Hamano, K.; Kitao, T. Heterocycles 1984, 21, 707; https://doi.org/10.3987/s-1984-02-0707.Search in Google Scholar

26. Unzue, A.; Jessen-Trefzer, C.; Spiliotopoulos, D.; Gaudio, E.; Tarantelli, C.; Dong, J.; Zhao, H.; Pachmayr, J.; Zahler, S.; Bernasconi, E. RSC Med. Chem. 2020, 11, 665–675; https://doi.org/10.1039/d0md00049c.Search in Google Scholar PubMed PubMed Central

27. Makane, V. B.; Vamshi Krishna, E.; Karale, U. B.; Babar, D. A.; Kalari, S.; Rekha, E. M.; Shukla, M.; Kaul, G.; Sriram, D.; Chopra, S. Arch. Pharm. (Weinheim, Ger.) 2020, 353, 2000192; https://doi.org/10.1002/ardp.202000192.Search in Google Scholar PubMed

28. Vidaillac, C.; Guillon, J.; Arpin, C.; Forfar-Bares, I.; Ba, B. B.; Grellet, J.; Moreau, S.; Caignard, D.-H.; Jarry, C.; Quentin, C. Antimicrob. Agents Chemother. 2007, 51, 831–838; https://doi.org/10.1128/aac.01306-05.Search in Google Scholar

29. Dubinina, G. G.; Volovenko, Y. M.; Shishkina, S. V.; Shishkin, O. V.; Yarmoluk, S. M. Heterocycles 2001, 55, 2189–2198; https://doi.org/10.3987/com-01-9285.Search in Google Scholar

30. Mao, Y.; Maley, I.; Watson, W. H. J. Chem. Crystallogr. 2005, 35, 385–403; https://doi.org/10.1007/s10870-005-1693-y.Search in Google Scholar

31. Relles, H. M.; Schluenz, R. W. J. Org. Chem. 1971, 37, 1742–1745; https://doi.org/10.1021/jo00976a016.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0050).


Received: 2023-06-26
Accepted: 2024-02-25
Published Online: 2024-04-05

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0050/html
Scroll to top button