Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 5, 2024

A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications

  • Mohammad Alauddin and Mazharul M. Islam ORCID logo EMAIL logo

Abstract

Very recently, N-heterocyclic carbenes (NHCs) have found a wide range of applications in the fields of catalysis and nonlinear optics. Herein, we have employed 1,3-bis-(1(S)-benzyl)-4,5-dihydro-imidazol-based carbene as a reference molecule and substituted one H atom from each CH2 of the benzyl groups in both sides by CH3, NH2, and CF3 to study the thermodynamic and opto-electronic properties of NHCs theoretically. It was observed that the enthalpy (H), Gibb’s free energy (G), specific heat capacity (C v), and entropy (S) increase significantly in the presence of the electron-withdrawing groups compared to the electron-donating groups. The IR active in-plane bending vibrations of the CH (NHC) group are shifted to the higher frequency region for the considered substituted molecules compared to the reference carbene. The analysis of the electronic properties shows that the CH3-substituted carbene is more reactive for catalytic activities compared to other NHCs. The calculated nonlinear optical (NLO) properties reveal that the NH2-substituted NHC has the largest hyperpolarizability value whereas the CH3-substituted NHC has the largest dipole moment and polarizability among all, making them potential candidates for the development of NLO materials.


Corresponding author: Mazharul M. Islam, Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr, 12, Bonn 53115, Germany; and School of Chemistry, Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK, E-mail:
Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.

Funding source: Rheinische Friedrich-Wilhelms-Universität Bonn

Award Identifier / Grant number: Unassigned

Acknowledgments

MMI acknowledges the ‘guest researcher’ contract at the Institute of Physical and Theoretical Chemistry of the Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.

  1. Research ethics: Not applicable.

  2. Author contributions: The project was designed by MMI, the entire work was supervised by MMI. The computational work was performed by MA. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Voutchkova, A. M., Feliz, M., Clot, E., Eisenstein, O., Crabtree, R. H. Imidazolium carboxylates as versatile and selective N-heterocyclic carbene transfer agents: synthesis, mechanism, and applications. J. Am. Chem. Soc. 2007, 129, 12834–12846, https://doi.org/10.1021/ja0742885.Search in Google Scholar PubMed

2. Hassen, S., Zouaghi, M. O., Slimani, I., Arfaoui, Y., Özdemir, N., Özdemir, I., Gürbüz, N., Manso, L., Gatri, R., Hamdi, N. Synthesis, crystal structures, DFT calculations, and catalytic application in hydrosilylation of acetophenone derivatives with triethylsilane of novel rhodium-n-heterocyclic carbene (NHCs) complex. J. Mol. Struct. 2022, 1265, 133397, https://doi.org/10.1016/j.molstruc.2022.133397.Search in Google Scholar

3. Kumar, A., Kumar, M., Verma, A. K. Well-defined palladium N-heterocyclic carbene complexes: direct C-H bond arylation of heteroarenes. J. Org. Chem. 2020, 85, 13983–13996, https://doi.org/10.1021/acs.joc.0c02024.Search in Google Scholar PubMed

4. Sauvage, X., Demonceau, A., Delaude, L. Homobimetallic ruthenium-ethylene, vinylidene, allenylidene, and indenylidene catalysts for Olefin metathesis. Macromol. Symp. 2010, 293, 24–27, https://doi.org/10.1002/masy.200900044.Search in Google Scholar

5. Wang, Y., Qiao, Y., Lan, Y., Wei, D. Predicting the origin of selectivity in NHC catalyzed ring opening of formylcyclopropane: a theoretical investigation. Catal. Sci. Technol. 2021, 11, 332–337, https://doi.org/10.1039/d0cy01768j.Search in Google Scholar

6. Shyam, A., Mondal, P. Theoretical insight towards mechanism, role of NHC and DBU in the synthesis of substituted quinolines. ChemistrySelect 2020, 5, 1300–1307, https://doi.org/10.1002/slct.201903697.Search in Google Scholar

7. Mavroskoufis, A., Lohani, M., Weber, M., Hopkinson, M. N., Götze, J. P. A (TD-)DFT study on photo-NHC catalysis: photoenolization/Diels-Alder reaction of acid fluorides catalyzed by N-Heterocyclic carbenes. Chem. Sci. 2023, 14, 4027–4037, https://doi.org/10.1039/d2sc04732b.Search in Google Scholar PubMed PubMed Central

8. Ongagna, J. M., Fouegue, A. D. T., Amana, B. A., D’ambassa, G. M., Mfomo, J. Z., Meva’A, L. M., Mama, D. B. B3LYP, M06 and B3PW91 DFT assignment of nd8 metal-bis-(N-heterocyclic carbene) complexes. J. Mol. Model. 2020, 26, 246, https://doi.org/10.1007/s00894-020-04500-7.Search in Google Scholar PubMed

9. Benedikter, M., Musso, J., Kesharwani, M. K., Sterz, K. L., Elser, I., Ziegler, F., Fischer, F., Plietker, B., Frey, W., Kastner, J., Winkler, M., van Slageren, J., Nowakowski, M., Bauer, M., Buchmeiser, M. R. Charge distribution in cationic molybdenum imido alkylidene N-heterocyclic carbene complexes: a combined X-ray, XAS, XES, DFT, Mössbauer, and catalysis approach. ACS Catal. 2020, 10, 14810–14823, https://doi.org/10.1021/acscatal.0c03978.Search in Google Scholar

10. Pienko, K. M., Trzaskowski, B. Rate-limiting steps in the intramolecular C-H activation of ruthenium N-heterocyclic carbene complexes. J. Phys. Chem. A 2020, 124, 3609–3617, https://doi.org/10.1021/acs.jpca.0c01354.Search in Google Scholar PubMed PubMed Central

11. Liu, R., Zhu, S., Shi, H., Hu, J., Shu, M., Liu, J., Zhu, H. Synthesis, structural characterization, optoelectrical properties of Ir(III) complexes with imidazolium-based carbene ligands. Inorg. Chem. Commun. 2016, 74, 26–30, https://doi.org/10.1016/j.inoche.2016.10.029.Search in Google Scholar

12. Back, O., Ellinger, M. H., Martin, C. D., Martin, D., Bertrand, G. 31P NMR chemical shifts of carbene-phosphinidene adducts as an indicator of the p-accepting properties of carbenes. Angew. Chem. Int. Ed. 2013, 52, 2939–2943, https://doi.org/10.1002/anie.201209109.Search in Google Scholar PubMed

13. Vougioukalakis, G. C., Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746–1787, https://doi.org/10.1021/cr9002424.Search in Google Scholar PubMed

14. Krachko, T., Slootweg, J. C. N-Heterocyclic carbene phosphinidene adducts: synthesis, properties and applications. Eur. J. Inorg. Chem. 2018, 24, 2734–2754, https://doi.org/10.1002/ejic.201800459.Search in Google Scholar

15. Smith, C. A., Narouz, M. R., Lummis, P. A., Singh, I., Nazemi, A., Li, C. H., Crudden, C. M. N-Heterocyclic carbenes in materials chemistry. Chem. Rev. 2019, 119, 4986–5056, https://doi.org/10.1021/acs.chemrev.8b00514.Search in Google Scholar PubMed

16. Peris, E. Smart N-heterocyclic carbene ligands in catalysis. Chem. Rev. 2018, 118, 9988–10031, https://doi.org/10.1021/acs.chemrev.6b00695.Search in Google Scholar PubMed

17. Benhamou, L., Chandon, E., Lavigne, G., Laponnaz, S. B., Cesar, V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev. 2011, 111, 2705–2733, https://doi.org/10.1021/cr100328e.Search in Google Scholar PubMed

18. Mieusset, J. L., Brinker, U. H. The carbene reactivity surface: a classification. J. Org. Chem. 2008, 73, 1553–1558, https://doi.org/10.1021/jo7026118.Search in Google Scholar PubMed

19. Schuster, G. B. Structure and reactivity of carbenes having aryl substituents. Adv. Phys. Org. Chem. 1986, 22, 311–361.10.1016/S0065-3160(08)60170-7Search in Google Scholar

20. Harrison, J. F. Electronic structure of carbenes. I. CH2, CHF and CF2. J. Am. Chem. Soc. 1971, 93, 4112–4119, https://doi.org/10.1021/ja00746a003.Search in Google Scholar

21. Hahn, F. E., Jahnke, M. C. Heterocyclic carbenes: synthesis and coordination chemistry. Angew. Chem. Int. Ed. 2008, 47, 3122–3172, https://doi.org/10.1002/anie.200703883.Search in Google Scholar PubMed

22. Villar, P., Perez, A. B. G., del Lera, A. R. Deciphering the origin of enantioselectivity on the cis cyclopropanation of styrene with enantiopure di-chloro, di-gold(i)-SEGPHOS carbenoids generated from propargylic esters. J. Org. Chem. 2019, 84, 7664–7673, https://doi.org/10.1021/acs.joc.9b00250.Search in Google Scholar PubMed

23. Shi, J., Ran, J., Qin, C., Qi, W., Zhang, L. Kinetic mechanisms of hydrogen abstraction reactions from methanol by methyl, triplet methylene and formyl radicals. Comput. Theor. Chem. 2015, 1074, 73–82, https://doi.org/10.1016/j.comptc.2015.10.009.Search in Google Scholar

24. Wang, Y., Wu, B., Zhang, H., Wei, D., Tang, M. Computational study on N-heterocyclic carbene-catalyzed Csp2 -Csp3 bond activation/[4 + 2] cycloaddition cascade reaction of cyclobutenones with imines: a new application of the conservation principle of molecular orbital symmetry. Phys. Chem. Chem. Phys. 2016, 18, 19933–19943, https://doi.org/10.1039/c6cp03180c.Search in Google Scholar PubMed

25. Blyth, M. T., Coote, M. L. Manipulation of N-heterocyclic carbene reactivity with practical oriented electric fields. Phys. Chem. Chem. Phys. 2023, 25, 375–383, https://doi.org/10.1039/d2cp04507a.Search in Google Scholar PubMed

26. Fantuzzi, F., Coutinho, C. B., Oliveira, R. R., Nascimento, M. A. C. Diboryne nanostructures stabilized by multitopic N-heterocyclic carbenes: a computational study. Inorg. Chem. 2018, 57, 3931–3940, https://doi.org/10.1021/acs.inorgchem.8b00089.Search in Google Scholar PubMed

27. Bellotti, P., Koy, M., Hopkinson, M. N., Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem 2021, 5, 711–725, https://doi.org/10.1038/s41570-021-00321-1.Search in Google Scholar PubMed

28. Yan, H., Liu, Z., Tan, K., Tan, K., Ji, R., Ye, Y., Yan, T., Shen, Y. Synthesis and evaluation of indole-substituted N-heterocyclic carbene ligands. Tetrahedron Lett. 2020, 61, 152450, https://doi.org/10.1016/j.tetlet.2020.152450.Search in Google Scholar

29. Winkel, R. W., Dubinina, G. G., Abboud, K. A., Schanze, K. S. Photophysical properties of trans-platinum acetylide complexes featuring N-heterocyclic carbene ligands. Dalton Trans. 2014, 43, 17712–17720, https://doi.org/10.1039/c4dt01520g.Search in Google Scholar PubMed

30. Winn, C. L., Guillen, F., Pytkowicz, J., Roland, S., Mangeney, P., Alexakis, A. Enantioselective copper catalysed 1,4-conjugate addition reactions using chiral N-heterocyclic carbenes. J. Organomet. Chem. 2005, 690, 5672–5695, https://doi.org/10.1016/j.jorganchem.2005.07.024.Search in Google Scholar

31. Ma, X. H., Si, Y., Hu, J. H., Dong, X. Y., Xie, G., Pan, F., Wei, Y. L., Zang, S. Q., Zhao, Y. High-efficiency pure blue circularly polarized phosphorescence from chiral N-heterocyclic-carbene-stabilized copper (I) clusters. J. Am. Chem. Soc. 2023, 145, 25874–25886, https://doi.org/10.1021/jacs.3c10192.Search in Google Scholar PubMed

32. Kaur, G., Dominique, N. L., Hu, G., Nalaoh, P., Thimes, R. L., Strausser, S. L., Jensen, L., Camden, J. P., Jenkins, D. M. Reactivity variance between stereoisomers of saturated N-heterocyclic carbenes on gold surfaces. Inorg. Chem. Front. 2023, 10, 6282–6293, https://doi.org/10.1039/d3qi01541f.Search in Google Scholar

33. Parida, R., Das, S., Karas, L. J., Wu, J. C., Roymahapatra, G., Giri, S. Superalkali ligands as a building block for aromatic trinuclear Cu(I)-NHC complexes. Inorg. Chem. Front. 2019, 6, 3336–3344, https://doi.org/10.1039/c9qi00873j.Search in Google Scholar

34. Liu, G., Quintana, C., Wang, G., Kodikara, M. S., Du, J., Stranger, R., Zhang, C., Cifuentes, M. P., Humphrey, M. G. Organometallic complexes for non-linear optics. 59. syntheses and optical properties of some octupolar (N-heterocyclic carbene) gold complexes. Aust. J. Chem. 2017, 70, 79–89, https://doi.org/10.1071/ch16321.Search in Google Scholar

35. Islam, M. M., Bhuiyan, M. D. H., Bredow, T., Try, A. C. Theoretical investigation of the nonlinear optical properties of substituted anilines and N, N-dimethylanilines. Comput. Theor. Chem. 2011, 967, 165–170, https://doi.org/10.1016/j.comptc.2011.04.012.Search in Google Scholar

36. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 16, (Revision C.01); Gaussian, Inc.: Wallingford CT (USA), 2016.Search in Google Scholar

37. Hassan, A. U., Mohyuddin, A., Nadeem, S., Güleryüz, C., Hassan, S. U., Javed, M., Muhsan, M. S. Structural and electronic (absorption and fluorescence) properties of a stable triplet dibenzylcarbene: a DFT study. J. Fluoresc. 2022, 32, 1629–1638, https://doi.org/10.1007/s10895-022-02969-4.Search in Google Scholar PubMed

38. O’boyle, N. M., Tenderholt, A. L., Langner, K. M. GaussSum 3.0. J. Comp. Chem. 2008, 29, 839–845, https://doi.org/10.1002/jcc.20823.Search in Google Scholar PubMed

39. Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976.Search in Google Scholar

40. Alturk, S., Avci, D., Tamer, O., Atalay, Y. 1H-Pyrazole-3-carboxylic acid: experimental and computational study. J. Mol. Struct. 2018, 1164, 28–36, https://doi.org/10.1016/j.molstruc.2018.03.032.Search in Google Scholar

41. Koopmans, T. A. Ordering of wave functions and eigen energies to the individual electrons of an atom. Physica 1934, 1, 104–113, https://doi.org/10.1016/s0031-8914(34)90011-2.Search in Google Scholar

42. Kosar, B., Albayrak, C. Spectroscopic investigations and quantum chemical computational study of (E)-4-Methoxy-2-[(p-Tolylimino) methyl] phenol. Spectrochim. Acta A 2011, 78, 160–167, https://doi.org/10.1016/j.saa.2010.09.016.Search in Google Scholar PubMed

43. Gayathri, V., Pentela, N., Samanta, D. Palladium nanoparticles capped by thermoresponsive N-heterocyclic carbene: two different approaches for a comparative study. Appl. Organomet. Chem. 2021, 35, 1–14, https://doi.org/10.1002/aoc.6166.Search in Google Scholar

44. Batista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M., Raposo, M. M. Synthesis and characterization of new thienyl pyrrolyl benzothiazoles as efficient and thermally stable nonlinear optical chromophores. Tetrahedron 2007, 63, 4258–4265, https://doi.org/10.1016/j.tet.2007.03.065.Search in Google Scholar

45. You, J. W., Bongu, S. R., Bao, Q., Panoiu, N. C. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 2018, 8, 1–35, https://doi.org/10.1515/nanoph-2018-0106.Search in Google Scholar

46. Adant, C., Dupuis, M., Bredas, J. L. Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects. Int. J. Quantum Chem. 1995, 29, 497–507, https://doi.org/10.1002/qua.560560853.Search in Google Scholar

Received: 2023-10-25
Accepted: 2023-11-20
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0092/html
Scroll to top button